Photorhabdus luminescens

Last updated

Photorhabdus luminescens
Photorhabdus luminescens (01).tif
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Enterobacterales
Family: Morganellaceae
Genus: Photorhabdus
Species:
P. luminescens
Binomial name
Photorhabdus luminescens
(Thomas et Poinar, 1979) Boemare et al. 1993 emend. [1]
Synonyms

Xenorhabdus luminescens

Photorhabdus luminescens (previously called Xenorhabdus luminescens) is a Gammaproteobacterium of the family Morganellaceae, and is a lethal pathogen of insects.

Contents

It lives in the gut of an entomopathogenic nematode of the family Heterorhabditidae. When the nematode infects an insect, P. luminescens is released into the blood stream and rapidly kills the insect host (within 48 hours) by producing toxins, such as the high molecular weight insecticidal protein complex Tca. [2] P. luminescens also produces a proteic toxin through the expression of a single gene called makes caterpillars floppy (mcf). [3]

It also secretes enzymes which break down the body of the infected insect and bioconvert it into nutrients which can be used by both nematode and bacteria. In this way, both organisms gain enough nutrients to replicate (or reproduce in the case of the nematode) several times. The bacteria enter the nematode progeny as they develop.

3,5-Dihydroxy-4-isopropyl-trans-stilbene is produced by P. luminescens bacterial symbiont of the nematode Heterorhabditis megidis . Experiments with Galleria mellonella infected larvae supports the hypothesis that the compound has antibiotic properties that help minimize competition from other microorganisms and prevents the putrefaction of the nematode-infected insect cadaver. [4]

P. luminescens is bioluminescent; however, the reason for this is not yet properly understood.

It has been reported that infection by this bacterium of the wounds of soldiers in the American Civil War at the Battle of Shiloh caused the wounds to glow, and that this aided the survival of the soldiers due to the production of antibiotics by P. luminescens. [5] [6] This led to the phenomenon's nickname "Angel's Glow." [7]

There are no contemporary accounts of this phenomenon, meaning that it may be a myth or that conditions including low temperatures, low lighting, abundance of blood, time on battlefield, presence of specific vegetation, presence of rain and humidity, and the time to organize medical evacuation would prevent the phenomenon from recurring in current conditions. [8] [9]

P. luminescens' genome has been sequenced. It contains a MACPF protein, however, this molecule appears non-lytic. [10] It also contains the gcvB RNA gene which encodes a small non-coding RNA involved in the regulation of a number of amino acid transport systems as well as amino acid biosynthetic genes.

A deletion of the hfq gene causes loss of secondary metabolite production. [11]

It is a source for bioluminescence imaging.

See also

Related Research Articles

<span class="mw-page-title-main">Stilbenoid</span> Class of chemical compounds

Stilbenoids are hydroxylated derivatives of stilbene. They have a C6–C2–C6 structure. In biochemical terms, they belong to the family of phenylpropanoids and share most of their biosynthesis pathway with chalcones. Most stilbenoids are produced by plants, and the only known exception is the antihelminthic and antimicrobial stilbenoid, 2-isopropyl-5-[(E)-2-phenylvinyl]benzene-1,3-diol, biosynthesized by the Gram-negative bacterium Photorhabdus luminescens.

<span class="mw-page-title-main">Entomopathogenic nematode</span> Group of thread worms that attack insects

Entomopathogenic nematodes (EPN) are a group of nematodes (thread worms), that cause death to insects. The term entomopathogenic has a Greek origin, with entomon, meaning insect, and pathogenic, which means causing disease. They are animals that occupy a bio control middle ground between microbial pathogens and predator/parasitoids. Although many other parasitic thread worms cause diseases in living organisms (sterilizing or otherwise debilitating their host), entomopathogenic nematodes are specific in only infecting insects. Entomopathogenic nematodes (EPNs) live parasitically inside the infected insect host, and so they are termed as endoparasitic. They infect many different types of insects living in the soil like the larval forms of moths, butterflies, flies and beetles as well as adult forms of beetles, grasshoppers and crickets. EPNs have been found all over the world in a range of ecologically diverse habitats. They are highly diverse, complex and specialized. The most commonly studied entomopathogenic nematodes are those that can be used in the biological control of harmful insects, the members of Steinernematidae and Heterorhabditidae. They are the only insect-parasitic nematodes possessing an optimal balance of biological control attributes.

<i>Galleria mellonella</i> Species of moth

Galleria mellonella, the greater wax moth or honeycomb moth, is a moth of the family Pyralidae. G. mellonella is found throughout the world. It is one of two species of wax moths, with the other being the lesser wax moth. G. mellonella eggs are laid in the spring, and they have four life stages. Males are able to generate ultrasonic sound pulses, which, along with pheromones, are used in mating. The larvae of G. mellonella are also often used as a model organism in research.

<i>Heterorhabditis bacteriophora</i> Species of roundworm

Heterorhabditis bacteriophora is a species of entomopathogenic nematode known commonly as beneficial nematodes. They are microscopic and are used in gardening as a form of biological pest control. They are used to control ants, fleas, moths, beetles, flies, weevils, and other pests.

Xenorhabdus is a genus of motile, gram-negative bacteria from the family of the Morganellaceae. All the species of the genus are only known to live in symbiosis with soil entomopathogenic nematodes from the genus Steinernema.

Pseudomonas protegens are widespread Gram-negative, plant-protecting bacteria. Some of the strains of this novel bacterial species previously belonged to P. fluorescens. They were reclassified since they seem to cluster separately from other fluorescent Pseudomonas species. P. protegens is phylogenetically related to the Pseudomonas species complexes P. fluorescens, P. chlororaphis, and P. syringae. The bacterial species characteristically produces the antimicrobial compounds pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) which are active against various plant pathogens.

Photorhabdus is a genus of bioluminescent, gram-negative bacilli which lives symbiotically within entomopathogenic nematodes, hence the name photo and rhabdus. Photorhabdus is known to be pathogenic to a wide range of insects and has been used as biopesticide in agriculture.

Photorhabdus temperata is a species of bacteria. It has been divided into 6 subspecies. It is pathogenic to certain insects.

<i>Heterorhabditis megidis</i> Species of roundworm

Heterorhabditis megidis is a species of nematodes in the genus Heterorhabditis. All species of this genus are obligate parasites of insects, and some are used as biological control agents for the control of pest insects.

Xenorhabdus ehlersii is a bacterium from the genus of Xenorhabdus which has been isolated from the nematode Steinernema serratum in China.

Xenorhabdus cabanillasii is a bacterium from the genus of Xenorhabdus which has been isolated from the nematode Steinernema riobrave in Texas in the United States. Xenorhabdus cabanillasii produces the antifungal metabolite Cabanillasin.

Xenorhabdus szentirmaii is a bacterium from the genus Xenorhabdus which has been isolated from the nematode Steinernema rarum in Argentina. Xenorhabdus szentirmaii produces szentiamide, xenematide, bicornutin A xenofuranone A and xenofuranone B.

Xenorhabdus vietnamensis is a bacterium from the genus Xenorhabdus which has been isolated from the nematode Steinernema sangi in Vietnam.

<i>Steinernema carpocapsae</i> Species of roundworm

Steinernema carpocapsae is an entomopathogenic nematode and a member of the family Steinernematidae. It is a parasitic roundworm that has evolved an insect-killing symbiosis with bacteria, and kills its hosts within a few days of infection. This parasite releases its bacterial symbiont along with a variety of proteins into the host after infection, and together the bacteria and nematode overcome host immunity and kill the host quickly. As a consequence, S. carpocapsae has been widely adapted for use as a biological control agent in agriculture and pest control. S. carpocapsae is considered a generalist parasite and has been effectively used to control a variety of insects including: Webworms, cutworms, armyworms, girdlers, some weevils, and wood-borers. This species is an example of an "ambush" forager, standing on its tail in an upright position near the soil surface and attaching to passing hosts, even capable of jumping. As an ambush forager, S. carpocapsae is thought to be especially effective when applied against highly mobile surface-adapted insects. S. carpocapsae can sense carbon dioxide production, making the spiracles a key portal of entry into its insect hosts. It is most effective at temperatures ranging from 22–28 °C (72–82 °F).

The Steinernematidae are a family of nematodes in the order Rhabditida.

<i>Steinernema</i> Genus of roundworms

Steinernema is a genus of nematodes in the family of Steinernematidae. The genus Steinernema is named after the nematologist Gotthold Steiner.

<span class="mw-page-title-main">Morganellaceae</span> Family of bacteria

The Morganellaceae are a family of Gram-negative bacteria that include some important human pathogens formerly classified as Enterobacteriaceae. This family is a member of the order Enterobacterales in the class Gammaproteobacteria of the phylum Pseudomonadota. Genera in this family include the type genus Morganella, along with Arsenophonus, Cosenzaea, Moellerella, Photorhabdus, Proteus, Providencia and Xenorhabdus.

<span class="mw-page-title-main">Darobactin</span> Chemical compound

Darobactin is an experimental antibiotic compound that may be effective against Gram-negative bacteria. If it can be developed into a human-compatible form it would be the first to come from an animal microbiome.

Necromeny is a symbiotic relationship where an animal infects a host and waits inside its body until its death, at which point it develops and completes its life-cycle on the cadaver, feeding on the decaying matter and the subsequent bacterial growth. As the necromenic animal benefits from the relationship while the host is unharmed, it is an example of commensalism.

<span class="mw-page-title-main">Tapinarof</span> Chemical compound

Tapinarof, also known as benvitimod and sold under the brand name Vtama, is a medication used for the treatment of plaque psoriasis. The medication is applied to the skin. Besides its use in medicine, tapinarof is a naturally occurring compound found in bacterial symbionts of nematodes which has antibiotic properties.

References

  1. Boemare, N. E.; Akhurst, R. J.; Mourant, R. G. (1993). "DNA Relatedness between Xenorhabdus spp. (Enterobacteriaceae), Symbiotic Bacteria of Entomopathogenic Nematodes, and a Proposal to Transfer Xenorhabdus luminescens to a New Genus, Photorhabdus gen. Nov". International Journal of Systematic Bacteriology. 43 (2): 249. doi: 10.1099/00207713-43-2-249 .
  2. Blackburn, MB; Domek, JM; Gelman, DB; Hu, JS (2005). "The broadly insecticidal Photorhabdus luminescens toxin complex a (Tca): Activity against the Colorado potato beetle, Leptinotarsa decemlineata, and sweet potato whitefly, Bemisia tabaci". Journal of Insect Science. 5: 32. doi:10.1093/jis/5.1.32. PMC   1615239 . PMID   17119614. Archived from the original on 2013-12-02. Retrieved 2016-11-11.
  3. Daborn, P. J.; Waterfield, N.; Silva, C. P.; Au, C. P. Y.; Sharma, S.; Ffrench-Constant, R. H. (2002). "A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects". Proceedings of the National Academy of Sciences. 99 (16): 10742–10747. doi: 10.1073/pnas.102068099 . PMC   125031 . PMID   12136122.
  4. Hu, K; Webster, JM (2000). "Antibiotic production in relation to bacterial growth and nematode development in Photorhabdus--Heterorhabditis infected Galleria mellonella larvae". FEMS Microbiology Letters. 189 (2): 219–23. doi:10.1111/j.1574-6968.2000.tb09234.x. PMID   10930742.
  5. Durham, Sharon (2001-05-29). "Students May Have Answer for Faster-Healing Civil War Wounds that Glowed". Agricultural Research Service.
  6. Kwok, Roberta (21 January 2012). "New Scientist - 21 January 2012 -Driller Killer". New Scientist .
  7. Soniak, Matt (2012-04-05). "Why Some Civil War Soldiers Glowed in the Dark". Mental Floss. Archived from the original on 2012-10-14.
  8. "Photorhabdus luminescens: The Angel's Glow". The Naked Scientists. February 25, 2011. Retrieved May 2, 2022.
  9. "Angel's Glow: From Civil War Folklore To Winning Science Fair Project". WBUR. August 21, 2020. Retrieved May 2, 2022.
  10. Rosado CJ, Buckle AM, Law RH, et al. (2007). "A Common Fold Mediates Vertebrate Defense and Bacterial Attack". Science. 317 (5844): 1548–51. doi: 10.1126/science.1144706 . PMID   17717151. S2CID   20372720.
  11. Tobias NJ, Heinrich AK, Eresmann H, Wright PR, Neubacher N, Backofen R, Bode HB (2016). "Photorhabdus-nematode symbiosis is dependent on hfq-mediated regulation of secondary metabolites". Environmental Microbiology. 19 (1): 119–129. doi:10.1111/1462-2920.13502. PMID   27555343. S2CID   6541706.