Photorhabdus

Last updated

Photorhabdus
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Photorhabdus

(Boemare et al. 1993) emend. Fischer-Le Saux et al. 1999
Species

Photorhabdus is a genus of bioluminescent, gram-negative bacilli which lives symbiotically within entomopathogenic nematodes, hence the name photo (which means light producing) and rhabdus (rod shape). [1] Photorhabdus is known to be pathogenic to a wide range of insects and has been used as biopesticide in agriculture.

Contents

Life cycle

Photorhabdus species facilitate the reproduction of entomopathogenic nematodes by infecting and killing susceptible insect larvae. [2] Entomopathogenic nematodes are normally found in soil. Nematodes infect larval hosts by piercing the larval cuticle. When the nematode enters an insect larvae, Photorhabdus species are released by the nematodes and will produce a range of toxins, killing the host within 48 hours. Photorhabdus species feed on the cadaver of the insect and the process converts the cadaver into a nutrient source for the nematode. Mature nematodes leave the depleted body of the insect and search for new hosts to infect.

Entomopathogenic nematodes emerging from a wax moth cadaver Entomopathogenic nematode (Heterorhabditis bacteriophora ) Poinar, 1975.jpg
Entomopathogenic nematodes emerging from a wax moth cadaver

During stationary phase growth inside insect larvae, Photorhabdus species synthesize a molecule called 3,5-Dihydroxy-4-isopropyl-trans-stilbene (ST). It is proposed that ST acts as an antibiotic and protects Photorhabdus species from competition from other microorganisms, and also helps circumvent the insect's immune system. [1]

3,5-Dihydroxy-4-isopropyl-trans-stilbene(ST) Benvitimod.svg
3,5-Dihydroxy-4-isopropyl-trans-stilbene(ST)

Photorhabdus species are essential endosymbionts for Heterorhabditis nematodes.

Genome sequence

The complete genome of Photorhabdus luminescens was sequenced in 2003. The DNA sequence of Photorhabdus contains a number of toxin-encoding genes that are essential for killing the insect after infection. This includes genes encoding toxins that kill Manduca sexta , the tobacco hornworm, gene mcf that causes apoptosis in insect hemocytes and midgut epithelium, and genes that intervene in the development of insect host. [3]

Another important sequence identified is the gene encoding polyketide and nonribosomal peptide syntheses which produce antibiotics to protect against microbial competitors. [3]

It is proposed that Photorhabdus species acquired the toxin genes by horizontal gene transfer during evolution.

In agriculture

The efficiency of insect-killing nature of Photorhabdus species and its potential use as biopesticide have been studied. Use of Photorhabdus species alone as biopesticide, independent of its nematode symbiont, against the cabbage white butterfly, Pieris brassicae , mango mealy bug, Drosicha mangiferae and the pupae of the diamond back moth, Plutella xylostella has been demonstrated successful. [4] It also has the pathogenic potential to kill the Asian corn borer, a pest of maize in east Asia, in 48 hours.

As disease-causing agent

Three species of Photohabdus have been found, which are Photorhabdus luminescens , Photorhabdus temperata and Photorhabdus asymbiotica. P. asymbiotica has been shown to be infectious to human, but the cases are mostly non-fatal and are restricted to the US state of Texas and the Gold Coast of Australia. [1]

The first case of human infection was reported by the Centers for Disease Control in the United States in 1989. [5]

In 1999, a study reported another four cases of Photorhabdus luminescens infection in south eastern Australia, one in 1994 and three in 1998. [6]

Related Research Articles

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, Gram-negative, aerobic–facultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes. P. aeruginosa is able to selectively inhibit various antibiotics from penetrating its outer membrane - and has high resistance to several antibiotics. According to the World Health Organization P. aeruginosa poses one of the greatest threats to humans in terms of antibiotic resistance.

<span class="mw-page-title-main">Stilbenoid</span> Class of chemical compounds

Stilbenoids are hydroxylated derivatives of stilbene. They have a C6–C2–C6 structure. In biochemical terms, they belong to the family of phenylpropanoids and share most of their biosynthesis pathway with chalcones. Most stilbenoids are produced by plants, and the only known exception is the antimicrobial stilbenoid drug tapinarof which is biosynthesized by the Gram-negative bacterium Photorhabdus luminescens.

<span class="mw-page-title-main">Entomopathogenic nematode</span> Group of thread worms that attack insects

Entomopathogenic nematodes (EPN) are a group of nematodes, that cause death to insects. The term entomopathogenic has a Greek origin, with entomon, meaning insect, and pathogenic, which means causing disease. They are animals that occupy a bio control middle ground between microbial pathogens and predator/parasitoids. Although many other parasitic thread worms cause diseases in living organisms, entomopathogenic nematodes are specific in only infecting insects. Entomopathogenic nematodes (EPNs) live parasitically inside the infected insect host, and so they are termed as endoparasitic. They infect many different types of insects living in the soil like the larval forms of moths, butterflies, flies and beetles as well as adult forms of beetles, grasshoppers and crickets. EPNs have been found all over the world in a range of ecologically diverse habitats. They are highly diverse, complex and specialized. The most commonly studied entomopathogenic nematodes are those that can be used in the biological control of harmful insects, the members of Steinernematidae and Heterorhabditidae. They are the only insect-parasitic nematodes possessing an optimal balance of biological control attributes.

<i>Photorhabdus luminescens</i> Species of bacterium

Photorhabdus luminescens is a Gammaproteobacterium of the family Morganellaceae, and is a lethal pathogen of insects.

The Membrane Attack Complex/Perforin (MACPF) superfamily, sometimes referred to as the MACPF/CDC superfamily, is named after a domain that is common to the membrane attack complex (MAC) proteins of the complement system and perforin (PF). Members of this protein family are pore-forming toxins (PFTs). In eukaryotes, MACPF proteins play a role in immunity and development.

<i>Bacillus anthracis</i> Species of bacterium

Bacillus anthracis is a gram-positive and rod-shaped bacterium that causes anthrax, a deadly disease to livestock and, occasionally, to humans. It is the only permanent (obligate) pathogen within the genus Bacillus. Its infection is a type of zoonosis, as it is transmitted from animals to humans. It was discovered by a German physician Robert Koch in 1876, and became the first bacterium to be experimentally shown as a pathogen. The discovery was also the first scientific evidence for the germ theory of diseases.

Moraxella osloensis is a Gram-negative oxidase-positive, aerobic bacterium within the family Moraxellaceae in the gamma subdivision of the purple bacteria.

<i>Heterorhabditis bacteriophora</i> Species of roundworm

Heterorhabditis bacteriophora is a species of entomopathogenic nematode known commonly as beneficial nematodes. They are microscopic and are used in gardening as a form of biological pest control. They are used to control ants, fleas, moths, beetles, flies, weevils, and other pests.

Xenorhabdus is a genus of motile, gram-negative bacteria from the family of the Morganellaceae. All the species of the genus are only known to live in symbiosis with soil entomopathogenic nematodes from the genus Steinernema.

<i>Purpureocillium lilacinum</i> Species of fungus

Purpureocillium lilacinum is a species of filamentous fungus in the family Ophiocordycipitaceae. It has been isolated from a wide range of habitats, including cultivated and uncultivated soils, forests, grassland, deserts, estuarine sediments and sewage sludge, and insects. It has also been found in nematode eggs, and occasionally from females of root-knot and cyst nematodes. In addition, it has frequently been detected in the rhizosphere of many crops. The species can grow at a wide range of temperatures – from 8 to 38 °C for a few isolates, with optimal growth in the range 26 to 30 °C. It also has a wide pH tolerance and can grow on a variety of substrates. P. lilacinum has shown promising results for use as a biocontrol agent to control the growth of destructive root-knot nematodes.

In biology, a pathogen, in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ.

Hamiltonella defensa is a species of bacteria. It is maternally or sexually transmitted and lives as an endosymbiont of whiteflies and aphids, meaning that it lives within a host, protecting its host from attack. It does this through bypassing the host's immune responses by protecting its host against parasitoid wasps. However, H. defensa is only defensive if infected by a virus. H. defensa shows a relationship with Photorhabdus species, together with Regiella insecticola. Together with other endosymbionts, it provides aphids protection against parasitoids. It is known to habitate Bemisia tabaci.

Arsenophonus nasoniae is a species of bacterium which was previously isolated from Nasonia vitripennis, a species of parasitoid wasp. These wasps are generalists which afflict the larvae of parasitic carrion flies such as blowflies, houseflies and flesh flies. A. nasoniae belongs to the phylum Pseudomonadota and family Morganellaceae. The genus Arsenophonus, has a close relationship to the Proteus (bacterium) rather than to that of Salmonella and Escherichia. The genus is composed of gammaproteobacterial, secondary-endosymbionts which are gram-negative. Cells are non-flagellated, non-motile, non-spore forming and form long to highly filamentous rods. Cellular division is exhibited through septation. The name 'Arsenophonus nasoniae gen. nov., sp. nov.' was therefore proposed for the discovered bacterium due to its characteristics and its microbial interaction with N. vitripennis. The type strain of A. nasoniae is Strain SKI4.

Photorhabdus temperata is a species of bacteria. It has been divided into 6 subspecies. It is pathogenic to certain insects.

<i>Heterorhabditis megidis</i> Species of roundworm

Heterorhabditis megidis is a species of nematodes in the genus Heterorhabditis. All species of this genus are obligate parasites of insects, and some are used as biological control agents for the control of pest insects.

<i>Steinernema carpocapsae</i> Species of roundworm

Steinernema carpocapsae is an entomopathogenic nematode and a member of the family Steinernematidae. It is a parasitic roundworm that has evolved an insect-killing symbiosis with bacteria, and kills its hosts within a few days of infection. This parasite releases its bacterial symbiont along with a variety of proteins into the host after infection, and together the bacteria and nematode overcome host immunity and kill the host quickly. As a consequence, S. carpocapsae has been widely adapted for use as a biological control agent in agriculture and pest control. S. carpocapsae is considered a generalist parasite and has been effectively used to control a variety of insects including: Webworms, cutworms, armyworms, girdlers, some weevils, and wood-borers. This species is an example of an "ambush" forager, standing on its tail in an upright position near the soil surface and attaching to passing hosts, even capable of jumping. As an ambush forager, S. carpocapsae is thought to be especially effective when applied against highly mobile surface-adapted insects. S. carpocapsae can sense carbon dioxide production, making the spiracles a key portal of entry into its insect hosts. It is most effective at temperatures ranging from 22–28 °C (72–82 °F).

<i>Steinernema</i> Genus of roundworms

Steinernema is a genus of nematodes in the family of Steinernematidae. The genus Steinernema is named after the nematologist Gotthold Steiner. Nematodes of this genus have been shown to be effective as a biological control for agricultural pests of the Scarabaeidae family, such as Maladera formosae.

<i>Drosophila quinaria</i> species group Species group of the subgenus Drosophila

The Drosophila quinaria species group is a speciose lineage of mushroom-feeding flies studied for their specialist ecology, their parasites, population genetics, and the evolution of immune systems. Quinaria species are part of the Drosophila subgenus.

<span class="mw-page-title-main">Morganellaceae</span> Family of bacteria

The Morganellaceae are a family of Gram-negative bacteria that include some important human pathogens formerly classified as Enterobacteriaceae. This family is a member of the order Enterobacterales in the class Gammaproteobacteria of the phylum Pseudomonadota. Genera in this family include the type genus Morganella, along with Arsenophonus, Cosenzaea, Moellerella, Photorhabdus, Proteus, Providencia and Xenorhabdus.

<span class="mw-page-title-main">Tapinarof</span> Chemical compound

Tapinarof, also known as benvitimod and sold under the brand name Vtama, is a medication used for the treatment of plaque psoriasis. The medication is applied to the skin. Besides its use in medicine, tapinarof is a naturally occurring compound found in bacterial symbionts of nematodes which has antibiotic properties.

References

  1. 1 2 3 David J. Clarke (2008). "Photorhabdus: shedding light on symbioses". Microbiology Today . 35 (4): 180–183.
  2. Gerrard, John G (2003). "Photorhabdus Species: Bioluminescent Bacteria as Human Pathogens?". Emerging Infectious Diseases . 9 (2). doi:10.3201/eid0902.020222. PMC   2902266 . PMID   12603999.
  3. 1 2 Williamson, Valerie M.; Kaya, Harry K (2003). "Sequence of a symbiont". Nature Biotechnology . 21 (11): 1924–1925. doi:10.1038/nbt1103-1294. PMID   14595358.
  4. Mohan Sharad; Sabir Naved (2005). "Biosafety concerns on the use of Photorhabdus luminescens as biopesticide : experimental evidence of mortality in egg parasitoid Trichogramma spp" (PDF). Current Science . 89: 1268–1272.
  5. Farmer JJ, Jorgensen JH, Grimont PA, Ackhurst RJ, Poinar GO, Ageron E (1989). "Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens". Journal of Clinical Microbiology . 27: 1594–600. PMC   267621 . PMID   2768446.
  6. Peel, M.M; et al. (1999). "Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia". Journal of Clinical Microbiology . 37: 3647–3653. PMC   85716 . PMID   10523568.

"Photorhabdus". National Center for Biotechnology Information (NCBI).