Pieris brassicae

Last updated

Large white
Large White. Pieris brassicae - Flickr - gailhampshire (1).jpg
Male
Large white spread wings.jpg
Female
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Pieridae
Genus: Pieris
Species:
P. brassicae
Binomial name
Pieris brassicae
Synonyms
  • Papilio brassicaeLinnaeus, 1758

Pieris brassicae, the large white, also called cabbage butterfly, cabbage white, cabbage moth (erroneously), or in India the large cabbage white, is a butterfly in the family Pieridae. It is a close relative of the small white, Pieris rapae .

Contents

The large white is common throughout Europe, North Africa and Asia.

Distribution

The large white is common throughout Europe, north Africa, and Asia to the Himalayas often in agricultural areas, meadows and parkland. It has managed to establish a population in South Africa and in 1995 it was predicted to spread to Australia and New Zealand. [1] [2]

The large white is a strong flier and the British population is reinforced in most years by migrations from the continent. Scattered reports of the large white from the north-eastern United States (New York, Rhode Island and Maine) over the past century are of a dubious nature and indicate either accidental transport or intentional release. Such introductions threaten to establish this agricultural pest in North America.

In 2010 the butterfly was found in Nelson, New Zealand where it is known as the great white butterfly. [3] It is classed as an unwanted pest due to the potential effect on crops. [4] For a limited period in October 2013 the Department of Conservation offered a monetary reward for the capture of the butterfly. [5] After two weeks, the public had captured 134 butterflies, netting $10 for each one handed in. [6] As a result of this and other containment measures, such as over 263,000 searches in the upper South Island and the release of predatory wasps, the large white was officially declared to be eradicated from New Zealand as of December 2014. [7]

Eggs

The large white ova are pale yellow, turning darker yellow within twenty-four hours of being oviposited. A few hours prior to hatching, they become black, the shell more transparent, and the larvae visible within. [8]

Eggs of the large white on underside of cauliflower leaf Pieris brassicae eggs, groot koolwitje eitjes (2).jpg
Eggs of the large white on underside of cauliflower leaf

Larvae

Large white larvae experience four moultings and five instars. The first instar follows hatching of the egg into large white larvae. The larvae are a light yellow in colour with distinctive brown heads and have soft bodies. The larvae appear as if they are very hairy. Following a moulting, the larvae enter the second instar. They have tubercles covered with black hair. In the third instar, large white larvae display more activity. This instar is when the larvae are observed to eat voraciously, and cause significant amounts of damage to their host plant. At this point, they are observed to be more yellow in colour, studded with black dots. Following the third instar, the larvae go through the fourth instar, with similar appearances as the larvae of the third instar, but with more aggrandized size and feeding behaviour. The large white larvae are observed to be cylindrical, robust, and elongated by the fifth instar, yellow in colour [8] and with bright colouration on their abdomen and thorax. They are also observed to have a grey and black head. This instar requires maximum food quality and quantity in order to aid in full development, otherwise the larva dies before becoming an adult butterfly. [8] [9]

Large white caterpillars on garden nasturtium leaves Large White Caterpillars on Nasturtium leaves.JPG
Large white caterpillars on garden nasturtium leaves
Large white chrysalis, under house eaves Large White Chrysalis, under house eaves.JPG
Large white chrysalis, under house eaves

Imagines

For both males and females, the wings are white with black tips on the forewings. The female also has two black spots on each forewing. The underside of each wing is a pale greenish and serves as excellent camouflage when at rest. The black markings are generally darker in the summer brood. The large white butterfly's wingspan reaches 5 to 6.5 cm on average. [8]

Male

The upperside of the male is creamy white. The forewing is irrorated (sprinkled) with black scales at the base and along costa for a short distance. The apex and termen above vein 2 are more or less broadly black with the inner margin of the black area containing a regular even curve. In one or two specimens a small longitudinally narrow black spot was found in interspace 3. Hindwing: uniform, irrorated with black scales at base, a large black subcostal spot before the apex, and in a few specimens indications of black scaling on the termen anteriorly. The underside of the forewing is white, slightly irrorated with black scales at the base of cell and along costa. The apex is light ochraceous brown with a large black spot in outer half of interspace 1 and another quadrate black spot at base of interspace 3. The hindwing is light ochraceous brown, closely irrorated with minute black scales. The subcostal black spot before the apex shows through from the upperside. The antennae are black and white at apex. The head, thorax, and abdomen are black, with some white hairs, where underneath is whitish. [10]

Female

The upperside of the female is similar to that of the male, but the irroration of black scales at the bases of the wings is more extended. The black area on apex and termen of forewing is broader, its inner margin less evenly curved. A conspicuous large, black spot also exists in the outer half of interspace 1 near the base of interspace 3. On the hindwing the subcostal black spot before the apex is much larger and more prominent. The underside is similar to that of the male but the apex of the forewing and the whole surface of the hindwing is a light ochraceous yellow, not ochraceous brown. The black discal spots on forewing are much larger. The antennae, head, thorax, and abdomen of the females are the same as for the male. [10]

Habitat

The large white butterfly's habitat consists of large, open spaces, as well as farms and vegetable gardens, because of the availability of its food source. Some favoured locations include walls, fences, tree trunks, and often their food plant. They primarily hover around these locations, which should contain both wild and cultivated crucifer, as well as oil-seed rape, cabbages, and Brussels sprouts. [11] [12] [13]

Reproduction and development

Mating system

These butterflies can be polyandrous, but it is not the predominant mating system. This means that, though some female butterflies can have more than one mate, most of the large white females only have one male mate at a time through a monogamous mating system. [14] [15]

Two generations of butterflies are produced each year. The first brood consists of adults with a spring hatching around April. The second brood is made up of adults that hatch around July. Sometimes, a third brood can be observed farther along in the summer if the weather is warm enough. [16]

Life cycle


Oviposition

These female butterflies oviposit in clusters on the undersides of leaves because the larvae prefer the morphology of leaf undersides over the upper surface of leaves. To oviposit, the female butterflies use the tip of the abdomen and arrange the ova in specific batches. [17]

The pre-oviposition period, which lasts three to eight days, provides ample time for these butterflies to mate. [18] Females tend to use their forelegs to drum on the surfaces of their intended leaves as a test of the plant's suitability for breeding. If they find a suitable surface, female large whites oviposit two to three days following copulation. They oviposit approximately six to seven times in eight days. The females can pair up to mate again approximately five or more days after the previous mating. [17]

Choosing locations for oviposition

Females rely on visual cues, such as the colours of plants, to decide where to lay their eggs. They favour green surfaces in particular to display oviposition behaviour. This colour preference could be due to the fact that the large white's food source also acts as a host plant for oviposition. [17]

Most females choose nectar plants like buddleia or thistles, [19] [20] which are green and ideal plants for the larvae. These plants, used as oviposition sites, typically contain mustard oil glucosides, whose primary function is to help the larvae survive as their essential food source. [17] [21] For instance, previous studies have shown that the large white larvae do not survive if the adult butterflies oviposit on a different host plant such as broad bean ( Vicia faba ) because this bean does not contain the proper nutrients to aid larval development. [17]

Hatching

The large white eggs hatch approximately one week after being laid and live as a group for some time. [11] [12] [13] The hatching period constitutes around two to seven hours. Upon hatching, they cause a lot of damage to the host plant by eating away at and destroying the host plant. [11] [12] [13] As expected during the colder moments of the day they may appear inactive - dormant.

Eggs and newly hatched caterpillars Caterpillars and eggs of Large White butterfly - geograph.org.uk - 1009228.jpg
Eggs and newly hatched caterpillars
Caterpillar Pieris brassicae (caterpillar).jpg
Caterpillar
Caterpillar Pieris brassicae (caterpillar) Portrait.jpg
Caterpillar

Behaviour

Migration

The large whites are found throughout most of Eurasia, though there are some seasonal fluctuations present due to migration. The northern populations tend to be augmented during the summer migration season from butterflies from southern areas. The large whites fly starting early spring, and keep migrating until seasons shift to autumn and the resultant cold weather. This means the large whites typically take two to three flights per butterfly reproductive season. [16] [19] [20]

Large white butterfly migration patterns are typically observed only when there is a disturbance. In general, the large white butterfly's migratory patterns are atypical; normally, butterflies fly towards the poles in the spring, and towards the more temperate Equator during the fall. However, they fly in random directions, excluding north, in the spring, and there is little return migration observed. [22] However, it has been hard to track entire migratory paths, since these butterflies can migrate more than 800 kilometres; thus, individual butterflies may not migrate the 800 kilometres, but rather that other butterflies start their migrations from where the other butterflies ended. [22]

Hibernation

Large white broods in the north have not been seen to overwinter, or hibernate over the winter, successfully. However, they have been observed to hibernate in the south. [9] [22] [23]

Territorial behaviour

Males do not display considerable amounts of territorial behaviour. It has been suggested that this could be a reason why there is no observed significant sexual dimorphism between the male and female large white butterflies. [15]

Ecology

Diet and food selection

Large white butterflies have a preference for what types of food plant they usually eat. Studies have shown that the preference for certain plants is reliant upon the butterflies' previous experiences. The large white butterflies, then, are shown to rely on the species of food plants, the time of experience, and the choice-situation. Thus, the large white butterflies learn what types of foods they prefer, rather than relying on their sense organs or physiological changes. [21] In contrast, this preference for adult food plant differs from the preference of female large whites using visual cues such as plant colour to determine the best host plants for oviposition. [17]

Plants with mustard-oil glucosides are important for this butterfly because it dictates their eating behaviours, [21] and resultant survival rates, as specified in the section regarding oviposition. This is so beneficial for large whites because their large consumption of plants containing mustard oils is the specific reason they are so distasteful to predators, such as birds. Thus, caterpillars are protected from attack, despite them being brightly coloured; in fact, the bright colouration is to signal to predators that they taste bad. [11] [12] [13]

However, there is more benefit to this species' use of mustard oil glucosides. In addition to predator protection, these glucosides belong to a class of stimuli that produce the biting responses associated with eating. Some plants contain alkaloids and steroids; these reduce and inhibit the butterflies' responsiveness to mustard oil glucosides. Thus, this utilization of mustard oil glucosides dramatically affects the behaviour of the butterfly, and the resulting food selection for survival. [21]

The food source of the larva of the white butterfly are cabbages, radishes, and the undersides of leaves. Adults feed on flower nectar.

Predators

Large white butterflies do not have a specific group of predators. Instead, they are preyed upon by a wide range of animals, and even the occasional plant. This butterfly's main predators include birds; however, large whites can also be preyed upon by species in orders such as Hymenoptera, Hemiptera, Coleoptera, Diptera, Arachnid; some species of mammals, one of reptiles, one species of insectivorous plant, and species in amphibian orders, as well as other miscellaneous insect species. The butterflies are typically preyed upon as eggs, larvae, and imagoes. [22]

Aposematism

Large white butterflies emit an unpleasant smell which deters predators. In addition, large whites are an aposematic species, meaning that they display warning colours, which benefits the large whites against predation. This aposematic colouration occurs in the larval, pupal, and imago stages, where toxic mustard oil glycosides from food plants are stored in the individuals' bodies. [22] [24] Aposematism is not entirely related to Müllerian mimicry; however, large white larvae often benefit from multiple other aposematic larvae from other species, such as the larvae of Papilio machaon . [25]

Relationship to people

Role as pests

The crops most susceptible to P. brassicae damage in areas in Europe are those in the genus Brassica (cabbage, mustard, and their allies), particularly Brussels sprouts, cabbage, cauliflower, kohlrabi, rape, swede, and turnip. The attacks to crops are rather localized and can lead to 100% crop loss in a certain area. In addition, because of its strong inclination to migrate, adults may infest new areas that were previously free from attack. Because many of the host plants of P. brassicae are sold for consumption, damage by these butterflies can cause a great reduction of crop value. Larvae may also bore into the vegetable heads of cabbage and cauliflower and cause damage. High populations of these larvae may also skeletonise their host plants. In present-day areas such as Great Britain, P. brassicae are now less threatening as pests because of natural and chemical control reasons. However, it is still considered a pest in other European countries, in China, India, Nepal, and Russia. In fact, it is estimated to cause over 40% yield loss annually on different crop vegetables in India and Turkey. [26]

Subspecies

Subspecies include the following: [27]

See also

Related Research Articles

<span class="mw-page-title-main">Green-veined white</span> Species of butterfly

The green-veined white is a butterfly of the family Pieridae.

<i>Pieris rapae</i> Species of butterfly

Pieris rapae is a small- to medium-sized butterfly species of the whites-and-yellows family Pieridae. It is known in Europe as the small white, in North America as the cabbage white or cabbage butterfly, on several continents as the small cabbage white, and in New Zealand as the white butterfly. The butterfly is recognizable by its white color with small black dots on its wings, and it can be distinguished from P. brassicae by its larger size and the black band at the tip of its forewings.

<span class="mw-page-title-main">Common blue</span> Species of butterfly

The common blue butterfly or European common blue is a butterfly in the family Lycaenidae and subfamily Polyommatinae. The butterfly is found throughout the Palearctic and has been introduced to North America. Butterflies in the Polyommatinae are collectively called blues, from the coloring of the wings. Common blue males usually have wings that are blue above with a black-brown border and a white fringe. The females are usually brown above with a blue dusting and orange spots.

<i>Pieris</i> (butterfly) Butterfly genus in family Pieridae

Pieris, the whites or garden whites, is a widespread now almost cosmopolitan genus of butterflies of the family Pieridae. The highest species diversity is in the Palearctic, with a higher diversity in Europe and eastern North America than the similar and closely related Pontia. The females of many Pieris butterflies are UV reflecting, while the male wings are strongly UV absorbing due to pigments in the scales.

<i>Pieris oleracea</i> Species of butterfly

Pieris oleracea, or more commonly known as the mustard white, is a butterfly in the family Pieridae native to a large part of Canada and the northeastern United States. The nearly all-white butterfly is often found in wooded areas or open plains. There are two seasonal forms, which make it distinct from other similar species. Because of climate change, populations are moving further north.

<i>Polygonia c-album</i> Species of butterfly

Polygonia c-album, the comma, is a food generalist (polyphagous) butterfly species belonging to the family Nymphalidae. The angular notches on the edges of the forewings are characteristic of the genus Polygonia, which is why species in the genus are commonly referred to as anglewing butterflies. Comma butterflies can be identified by their prominent orange and dark brown/black dorsal wings.

<i>Pontia daplidice</i> Species of butterfly

Pontia daplidice, the Bath white, is a small butterfly of the family Pieridae, the yellows and whites, which occurs in the Palearctic region. It is common in central and southern Europe, migrating northwards every summer, often reaching southern Scandinavia and sometimes southern England.

The term cabbage worm is primarily used for any of four kinds of lepidopteran larvae that feed on cabbages and other cole crops. Favorite foods include broccoli, cauliflower, Brussels sprouts, collards, kale, mustard greens, turnip greens, radishes, turnips, rutabagas and kohlrabi. This small group of similar pest species is known to agriculturists as the cabbage worm compte butterflies.

<span class="mw-page-title-main">Cabbage moth</span> Species of moth

The cabbage moth is primarily known as a pest that is responsible for severe crop damage of a wide variety of plant species. The common name, cabbage moth, is a misnomer as the species feeds on many fruits, vegetables, and crops in the genus Brassica. Other notable host plants include tobacco, sunflower, and tomato, making this pest species particularly economically damaging.

<i>Belenois aurota</i> Species of butterfly

Belenois aurota, the pioneer or pioneer white or caper white, is a small to medium-sized butterfly of the family Pieridae, that is, the yellows and whites, which is found in South Asia and Africa. In Africa, it is also known as the brown-veined white, and is well known during summer and autumn when large numbers migrate north-east over the interior.

<i>Papilio protenor</i> Species of butterfly

Papilio protenor, the spangle, is a butterfly found in India belonging to the swallowtail family.

<i>Pieris deota</i> Species of butterfly

Pieris deota, the Kashmir white, is a small butterfly of the family Pieridae, that is, the yellows and whites, which is found in India, Pakistan, Tibet, and central Asia. It is found in the north-western Himalayas in Ladakh at 760 m (2,490 ft) and in Tibet and the Pamirs, at altitudes of 3,700–4,300 m (12,100–14,100 ft).

<i>Anartia fatima</i> Species of butterfly

Anartia fatima, the banded peacock, is a butterfly in the family Nymphalidae. It is commonly found in south Texas, Mexico, and Central America but most studied in Costa Rica. This butterfly prefers subtropical climates and moist areas, such as near rivers. It spends much of its time in second-growth woodlands.

<span class="mw-page-title-main">Madeiran large white</span> Possibly extinct subspecies of butterfly

The Madeiran large white is a subspecies of the large white butterfly, endemic to Madeira. It was described by the English entomologist, Arthur Gardiner Butler in 1886.

<i>Calinaga buddha</i> Species of butterfly

Calinaga buddha, the freak, is a species of butterfly in the Calinaginae subfamily that is found in parts of Southeast Asia, China and India.

<i>Pontia protodice</i> Species of butterfly

Pontia protodice, the checkered white or southern cabbage butterfly, is a common North American butterfly in the family Pieridae. Its green larva is a type of cabbage worm.

<i>Jalmenus evagoras</i> Species of butterfly

Jalmenus evagoras, the imperial hairstreak, imperial blue, or common imperial blue, is a small, metallic blue butterfly of the family Lycaenidae. It is commonly found in eastern coastal regions of Australia. This species is notable for its unique mutualism with ants of the genus Iridomyrmex. The ants provide protection for juveniles and cues for adult mating behavior. They are compensated with food secreted from J. evagoras larvae. The ants greatly enhance the survival and reproductive success of the butterflies. J. evagoras lives and feeds on Acacia plants, so butterfly populations are localized to areas with preferred species of both host plants and ants.

<i>Parnassius smintheus</i> Species of butterfly

Parnassius smintheus, the Rocky Mountain parnassian or Rocky Mountain apollo, is a high-altitude butterfly found in the Rocky Mountains throughout the United States and Canada. It is a member of the snow Apollo genus (Parnassius) of the swallowtail family (Papilionidae). The butterfly ranges in color from white to pale yellow-brown, with red and black markings that indicate to predators it is unpalatable.

<i>Hemileuca lucina</i> Species of moth

Hemileuca lucina, the New England buck moth, is a species of moth in the family Saturniidae. This moth species is only found in the New England region of the United States. Larvae in early stages mainly feed on broadleaf meadowsweet whereas larvae in later stages show variation in food sources such as blackberry and black cherry leaves. Larvae have a black body with orange/black spines on their back that are used to deter predators. Pupation occurs during the summer and adult moths come out around September.

<i>Callophrys xami</i> Species of butterfly

Callophrys xami, commonly referred to as the xami hairstreak or green hairstreak, is a butterfly included in the subgenus Xamia and the genus Callophrys in the family Lycaenidae. It was described by Tryon Reakirt in 1867. Other common names for this species, depending on the region, include green hairstreak and elfin. C. xami is considered to be a very rare species of butterfly, and its typical range is in southern Arizona and Texas including down south to Guatemala. The juniper hairstreak and the silver-banded hairstreak butterflies are similar species, but both differ significantly from C. xami in regards to the postmedian white line running across the butterfly wings.

References

  1. "Pieris brassicae". Biodiversityexplorer.org. Archived from the original on 4 March 2016. Retrieved 18 December 2012.
  2. "The Large Cabbage White, Pieris brassicae, extends its range to South Africa". The Entomologist's Record and Journal of Variation. 107: 174. 1995. ISSN   0013-8916.
  3. Moore, Bill (17 June 2010). "Great white butterfly found in Nelson". Nelson Mail. Retrieved 18 December 2012.
  4. "Great white cabbage butterfly" (PDF). Ministry of Agriculture and Forestry. Archived from the original (PDF) on 23 September 2015. Retrieved 18 December 2012.
  5. Wanted: Great white butterfly, preferably dead Archived 2013-10-14 at the Wayback Machine . 3 News NZ. 25 September 2013.
  6. Holiday butterfly bounty season over Archived 2013-10-14 at the Wayback Machine . 3 News NZ. 14 October 2013.
  7. Klein, Alice (29 November 2016). "New Zealand is the first country to wipe out invasive butterfly". New Scientist. Retrieved 30 November 2016.
  8. 1 2 3 4 Molet, T. 2011. CPHST Pest Datasheet for Pieris brassicae. USDA-APHIS-PPQ-CPHST.
  9. 1 2 Metspalu, L.; Hiiesaar, K.; Joudu, J.; Kuusik, A. (2003). "Influence of Food on Growth, Development and Hibernation of Large White Butterfly". Agronomy Research. 1: 85–92.
  10. 1 2 Bingham, C.T. (1907). The Fauna of British India, Including Ceylon and Burma. Vol. II (1st ed.). London: Taylor and Francis, Ltd.
  11. 1 2 3 4 Carter, D. (1992) Butterflies and moths. Dorling Kindersley, London.
  12. 1 2 3 4 Asher, J., Warren, M., Fox, R., Harding, P., Jeffcoate, G. & Jeffcoate, S. (2001) The Millennium Atlas of Butterflies in Britain and Ireland. Oxford University Press, Oxford.
  13. 1 2 3 4 Carter, D. & Hargreaves, B. (1986) A field guide to caterpillars of butterflies and moths in Britain and Europe. William Collins & Sons Ltd, London.
  14. Karlsson, B. (1996). "Male Reproductive Reserves in Relation to Mating System in Butterflies: A Comparative Study". Proceedings of the Royal Society B: Biological Sciences. 263 (1367): 187–92. Bibcode:1996RSPSB.263..187K. doi:10.1098/rspb.1996.0030. JSTOR   50472. S2CID   85071282.
  15. 1 2 Wiklund, Christer and Forsberg, Johan (1991). "Sexual Size Dimorphism in Relation to Female Polygamy and Protandry in Butterflies: A Comparative Study of Swedish Pieridae and Satyridae". Oikos. 60 (3): 373–381. Bibcode:1991Oikos..60..373W. doi:10.2307/3545080. JSTOR   3545080.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. 1 2 "Pieris Brassicae — Overview." Encyclopedia of Life. N.p., n.d. Web. 24 October 2013.
  17. 1 2 3 4 5 6 David, W. A. L. and Gardiner, B. O. C. (1962). "Oviposition and the hatching of the eggs of Pieris brassicae (L.) in a laboratory culture". Bulletin of Entomological Research. 53: 91–109. doi:10.1017/S0007485300047982.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. Scott, James A. (1974). "Mate-Locating Behavior of Butterflies". American Midland Naturalist. 91 (1): 103–17. doi:10.2307/2424514. JSTOR   2424514.
  19. 1 2 Rowlings, Matt. "Large White." Pieris Brassicae – Field Notes. N.p., n.d. Web. 24 October 2013.
  20. 1 2 "Attributes of Pieris brassicae." Butterflies and Moths of North America | Collecting and Sharing Data about Lepidoptera. National Biological Information Infrastructure (NBII) Program and the USGS Northern Prairie Wildlife Research Center, n.d. Web. 24 October 2013.
  21. 1 2 3 4 Chun, Ma Wei. Dynamics of Feeding Responses in Pieris Brassicae Linn as a Function of Chemosensory Input: A Behavioural, Ultrastructural and Electrophysiological Study. Wageningen: H. Veenman, 1972. Print.
  22. 1 2 3 4 5 Feltwell, John. Large White Butterfly: The Biology, Biochemistry, and Physiology of Pieris Brassicae (Linnaeus). The Hague: W. Junk, 1982. Print.
  23. Pullin, A. S. (1991). "Physiological Aspects of Diapause and Cold Tolerance during Overwintering in Pieris brassicae". Physiological Entomology. 16 (4): 447–56. doi:10.1111/j.1365-3032.1991.tb00584.x. S2CID   85922279.
  24. Lyytinen, Anne; Alatalo, Rauno V.; Lindström, Leena; Mappes, Johanna (November 1999). "Are European White Butterflies Aposematic?" (PDF). Evolutionary Ecology. 13 (7/8): 709–719. Bibcode:1999EvEco..13..709L. doi:10.1023/A:1011081800202. S2CID   24480291 . Retrieved 1 December 2013.
  25. Lederhouse, Robert C. (1990). "Avoiding the Hunt: Primary Defenses of Lepidopteran Caterpillars". In Evans, David L.; Schmidt, Justin O. (eds.). Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. Albany: State University of New York Press. pp. 182–183. ISBN   978-0791406168.
  26. "Pieris brassicae". Archived from the original on 3 December 2013. Retrieved 21 November 2013.
  27. Savela, Markku. "Pieris Schrank, 1801". Lepidoptera and Some Other Life Forms. Retrieved 1 December 2020.