Pseudomonas protegens

Last updated

Pseudomonas protegens
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Pseudomonadales
Family: Pseudomonadaceae
Genus: Pseudomonas
Species:
P. protegens
Binomial name
Pseudomonas protegens
Ramette et al. 2011
Type strain
DSM 19095

ATCC BAA-477

Synonyms

Pseudomonas fluorescensFlügge 1886

Pseudomonas protegens are widespread Gram-negative, plant-protecting bacteria. [1] Some of the strains of this novel bacterial species (CHA0 and Pf-5, for example) previously belonged to P. fluorescens . They were reclassified since they seem to cluster separately from other fluorescent Pseudomonas species. P. protegens is phylogenetically related to the Pseudomonas species complexes P. fluorescens , P. chlororaphis , and P. syringae . The bacterial species characteristically produces the antimicrobial compounds pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) which are active against various plant pathogens. [1] [2]

Contents

General characteristics

Like P. fluorescens , Pseudomonas protegens is a typical soil microorganism with an extremely versatile metabolism, and can be isolated from roots of various plant species. The microbe is strictly aerobe (no reduction of nitrate) and oxidase-positive. [1] The bacterium grows at temperatures between 4 °C and 36 °C, and has one to three flagella. [3]

The name

The word Pseudomonas means 'false unit', being derived from the Greek words pseudo (Greek: ψευδο 'false') and monas (Latin: monas, fr. Greek: μονάς/μονάδα 'a single unit'). The species name 'protegens' refers to the bacterium's ability to protect plants from soil-borne phytopathogens. [1]

Genome sequencing projects

The genome of P. protegens strain Pf-5 [4] has been sequenced and published. [5]

Biocontrol properties

Pseudomonas protegens has been studied for more than twenty years for its biocontrol properties. [6] Most studies have been carried out with the model strains CHA0 and Pf-5.

Insecticidal activity

In addition to efficiently protect plant roots against phytopathogenic fungi (described in detail for P. fluorescens ), Pseudomonas protegens was discovered to display toxicity towards certain insects upon oral ingestion or injection into the hemolymph. [7] [8] [9] The insecticidal activity of the bacterium was found to be in part due to the production of an insect toxin (FitD), which is similar to a well-known protein toxin (Mcf) produced by Photorhabdus luminescens .

Related Research Articles

<i>Pseudomonas</i> Genus of Gram-negative bacteria

Pseudomonas is a genus of Gram-negative bacteria belonging to the family Pseudomonadaceae in the class Gammaproteobacteria. The 313 members of the genus demonstrate a great deal of metabolic diversity and consequently are able to colonize a wide range of niches. Their ease of culture in vitro and availability of an increasing number of Pseudomonas strain genome sequences has made the genus an excellent focus for scientific research; the best studied species include P. aeruginosa in its role as an opportunistic human pathogen, the plant pathogen P. syringae, the soil bacterium P. putida, and the plant growth-promoting P. fluorescens, P. lini, P. migulae, and P. graminis.

<i>Pseudomonas fluorescens</i> Species of bacterium

Pseudomonas fluorescens is a common Gram-negative, rod-shaped bacterium. It belongs to the Pseudomonas genus; 16S rRNA analysis as well as phylogenomic analysis has placed P. fluorescens in the P. fluorescens group within the genus, to which it lends its name.

<i>Pseudomonas putida</i> Species of bacterium

Pseudomonas putida is a Gram-negative, rod-shaped, saprophytic soil bacterium. It has a versatile metabolism and is amenable to genetic manipulation, making it a common organism used in research, bioremediation, and synthesis of chemicals and other compounds.

<span class="mw-page-title-main">Pseudomonadaceae</span> Family of gram-negative bacteria

The Pseudomonadaceae are a family of bacteria which includes the genera Azomonas, Azorhizophilus, Azotobacter, Mesophilobacter, Pseudomonas, and Rugamonas. The family Azotobacteraceae was recently reclassified into this family.

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, Gram-negative, aerobic–facultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes.

Pseudomonas chlororaphis is a bacterium used as a soil inoculant in agriculture and horticulture. It can act as a biocontrol agent against certain fungal plant pathogens via production of phenazine-type antibiotics. Based on 16S rRNA analysis, similar species have been placed in its group.

<i>Photorhabdus luminescens</i> Species of bacterium

Photorhabdus luminescens is a Gammaproteobacterium of the family Morganellaceae, and is a lethal pathogen of insects.

<i>Pseudomonas syringae</i> Species of bacterium

Pseudomonas syringae is a rod-shaped, Gram-negative bacterium with polar flagella. As a plant pathogen, it can infect a wide range of species, and exists as over 50 different pathovars, all of which are available to researchers from international culture collections such as the NCPPB, ICMP, and others.

Pseudomonas corrugata is a Gram-negative, plant-pathogenic bacterium that causes pith necrosis in tomatoes. Based on 16S rRNA analysis, P. corrugata has been placed in the P. fluorescens group. For a more comprehensive phylogenetic analysis of P. corrugata and its closely related phytopathogenic bacterium P. mediterranea, refer to Trantas et al. 2015.

Pseudomonas tolaasii is a species of Gram-negative soil bacteria that is the causal agent of bacterial blotch on cultivated mushrooms. It is known to produce a toxin, called tolaasin, which is responsible for the brown blotches associated with the disease. It also demonstrates hemolytic activity, causing lysis of erythrocytes. Based on 16S rRNA analysis, P. tolaasii has been placed in the P. fluorescens group.

Pseudomonas veronii is a Gram-negative, rod-shaped, fluorescent, motile bacterium isolated from natural springs in France. It may be used for bioremediation of contaminated soils, as it has been shown to degrade a variety of simple aromatic organic compounds. Based on 16S rRNA analysis, P. veronii has been placed in the P. fluorescens group.

Pseudomonas aurantiaca is an orange Gram-negative soil bacterium, originally isolated from the rhizosphere soil of potatoes. It produces di-2,4-diacetylfluoroglucylmethan, which is antibiotically active against Gram-positive organisms. It has shown potential for use as a biocontrol agent against plant-pathogenic microbes. Based on 16S rRNA analysis, P. aurantiaca has been placed in the P. chlororaphis group.

Pseudomonas migulae is a fluorescent, Gram-negative, rod-shaped bacterium isolated from natural mineral waters in France. This bacterium has also been isolated from endophytic tissues of lodgepole pine trees growing on gravel mining sites with potential to perform biological nitrogen fixation and plant growth promotion. Based on 16S rRNA analysis, P. migulae has been placed in the P. fluorescens group.

<i>Pseudomonas stutzeri</i> Species of bacterium

Pseudomonas stutzeri is a Gram-negative soil bacterium that is motile, has a single polar flagellum, and is classified as bacillus, or rod-shaped. While this bacterium was first isolated from human spinal fluid, it has since been found in many different environments due to its various characteristics and metabolic capabilities. P. stutzeri is an opportunistic pathogen in clinical settings, although infections are rare. Based on 16S rRNA analysis, this bacterium has been placed in the P. stutzeri group, to which it lends its name.

<i>Xanthomonas</i> Genus of bacteria

Xanthomonas is a genus of bacteria, many of which cause plant diseases. There are at least 27 plant associated Xanthomonas spp., that all together infect at least 400 plant species. Different species typically have specific host and/or tissue range and colonization strategies.

<i>Pantoea agglomerans</i> Species of bacterium

Pantoea agglomerans is a Gram-negative bacterium that belongs to the family Erwiniaceae.

<span class="mw-page-title-main">RsmY RNA family</span>

The rsmY RNA family is a set of related non-coding RNA genes, that like RsmZ, is regulated by the GacS/GacA signal transduction system in the plant-beneficial soil bacterium and biocontrol model organism Pseudomonas fluorescens CHA0. GacA/GacS target genes are translationally repressed by the small RNA binding protein RsmA. RsmY and RsmZ RNAs bind RsmA to relieve this repression and so enhance secondary metabolism and biocontrol traits.

<span class="mw-page-title-main">Pyoverdine</span> Chemical compound

Pyoverdines are fluorescent siderophores produced by certain pseudomonads. Pyoverdines are important virulence factors, and are required for pathogenesis in many biological models of infection. Their contributions to bacterial pathogenesis include providing a crucial nutrient, regulation of other virulence factors, supporting the formation of biofilms, and are increasingly recognized for having toxicity themselves.

<span class="mw-page-title-main">2,4-Diacetylphloroglucinol</span> Chemical compound

2,4-Diacetylphloroglucinol or Phl is a natural phenol found in several bacteria:

Eve Billing (1923–2019) was a UK plant pathologist specialising in diseases of fruit trees especially fire blight caused by Erwinia amylovora bacteria. She introduced a modelling system to predict the likelihood of outbreaks of fire blight and also methods for pathogen identification and treatment.

References

  1. 1 2 3 4 Ramette; et al. (2011). "Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin". Systematic and Applied Microbiology. 34 (3): 180–188. doi:10.1016/j.syapm.2010.10.005. PMID   21392918.
  2. Haas, D; Defago, G (2005). "Biological control of soil-borne pathogens by fluorescent pseudomonads". Nature Reviews Microbiology. 3 (4): 307–19. doi:10.1038/nrmicro1129. PMID   15759041. S2CID   18469703.
  3. Voisard, C. (1988) Etude génétique de Pseudomonas fluorescens CHA0, une souche antagoniste de champignons phytopathogènes. In: PhD Dissertation No. 8663, ETHZ, Zürich.
  4. "Pseudomonas fluorescens Pf-5 Genome Page". Archived from the original on 2009-06-28. Retrieved 2012-11-13.
  5. Loper; et al. (2007). "The genomic sequence of Pseudomonas fluorescens Pf-5: Insights into biological control". Phytopathology. 97 (2): 233–8. doi:10.1094/phyto-97-2-0233. PMID   18944380.
  6. Haas; Keel (2003). "Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease". Annu. Rev. Phytopathol. 41: 117–53. doi:10.1146/annurev.phyto.41.052002.095656. PMID   12730389.
  7. Péchy-Tarr; et al. (2008). "Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens". Environmental Microbiology. 10 (9): 2368–2386. doi:10.1111/j.1462-2920.2008.01662.x. PMID   18484997.
  8. Ruffner; et al. (2012). "Oral insecticidal activity of plant-associated pseudomonads". Environmental Microbiology. 15 (3): 751–763. doi:10.1111/j.1462-2920.2012.02884.x. PMID   23033861.
  9. Devi; Kothamasi (2009). "Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain". FEMS Microbiol Lett. 300 (2): 195–200. doi: 10.1111/j.1574-6968.2009.01782.x . PMID   19769587.