Pseudomonadaceae

Last updated

Pseudomonadaceae
Pseudomonas aeruginosa 01.jpg
P. aeruginosa colonies on an agar plate
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Pseudomonadales
Family: Pseudomonadaceae
Winslow et al., 1917
Type genus
Pseudomonas
Migula 1894 (Approved Lists 1980)
Genera
Synonyms [1]
  • Azotobacteraceae Pribram 1933 (Approved Lists 1980)

The Pseudomonadaceae are a family of bacteria which includes the genera Azomonas , Azorhizophilus , Azotobacter , Mesophilobacter , Pseudomonas (the type genus), and Rugamonas . [2] [3] The family Azotobacteraceae was recently reclassified into this family. [4]

Contents

History

Pseudomonad literally means false unit, being derived from the Greek pseudo ( ψευδο- – false) and monas (μονος – a single unit). The term "monad" was used in the early history of microbiology to denote single-celled organisms. Because of their widespread occurrence in nature, the pseudomonads were observed early in the history of microbiology. The generic name Pseudomonas created for these organisms was defined in rather vague terms in 1894 as a genus of Gram-negative, rod-shaped, and polar-flagellated bacteria. Soon afterwards, a large number of species was assigned to the genus. Pseudomonads were isolated from many natural niches. New methodology and the inclusion of approaches based on the studies of conservative macromolecules have reclassified many species.

Pseudomonas aeruginosa is increasingly recognized as an emerging opportunistic pathogen of clinical relevance. Studies also suggest the emergence of antibiotic resistance in P. aeruginosa. [5]

In 2000, the complete genome of a Pseudomonas species was sequenced; more recently, the genomes of other species have been sequenced, including P. aeruginosa PAO1 (2000), P. putida KT2440 (2002), P. fluorescens Pf-5 (2005), P. fluorescens PfO-1, and P. entomophila L48. Several pathovars of Pseudomonas syringae have been sequenced, including pathovar tomato DC3000 (2003), pathovar syringae B728a (2005), and pathovar phaseolica 1448A (2005). [3]

Distinguishing characteristics

The presence of oxidase and polar flagella and inability to carry out fermentation differentiate pseudomonads from the Enterobacteriaceae. [7]

Related Research Articles

<span class="mw-page-title-main">Pseudomonadota</span> Phylum of Gram-negative bacteria

Pseudomonadota is a major phylum of Gram-negative bacteria. The renaming of several prokaryote phyla in 2021, including Pseudomonadota, remains controversial among microbiologists, many of whom continue to use the earlier name Proteobacteria, of long standing in the literature. The phylum Proteobacteria includes a wide variety of pathogenic genera, such as Escherichia, Salmonella, Vibrio, Yersinia, Legionella, and many others. Others are free-living (non-parasitic) and include many of the bacteria responsible for nitrogen fixation.

<i>Pseudomonas</i> Genus of Gram-negative bacteria

Pseudomonas is a genus of Gram-negative bacteria belonging to the family Pseudomonadaceae in the class Gammaproteobacteria. The 313 members of the genus demonstrate a great deal of metabolic diversity and consequently are able to colonize a wide range of niches. Their ease of culture in vitro and availability of an increasing number of Pseudomonas strain genome sequences has made the genus an excellent focus for scientific research; the best studied species include P. aeruginosa in its role as an opportunistic human pathogen, the plant pathogen P. syringae, the soil bacterium P. putida, and the plant growth-promoting P. fluorescens, P. lini, P. migulae, and P. graminis.

<i>Pseudomonas fluorescens</i> Species of bacterium

Pseudomonas fluorescens is a common Gram-negative, rod-shaped bacterium. It belongs to the Pseudomonas genus; 16S rRNA analysis as well as phylogenomic analysis has placed P. fluorescens in the P. fluorescens group within the genus, to which it lends its name.

<i>Pseudomonas putida</i> Species of bacterium

Pseudomonas putida is a Gram-negative, rod-shaped, saprophytic soil bacterium. It has a versatile metabolism and is amenable to genetic manipulation, making it a common organism used in research, bioremediation, and synthesis of chemicals and other compounds.

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, Gram-negative, aerobic–facultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes. P. aeruginosa is able to selectively inhibit various antibiotics from penetrating its outer membrane - and has high resistance to several antibiotics, according to the World Health Organization P. aeruginosa poses one of the greatest threats to humans in terms of antibiotic resistance.

Pseudomonas chlororaphis is a bacterium used as a soil inoculant in agriculture and horticulture. It can act as a biocontrol agent against certain fungal plant pathogens via production of phenazine-type antibiotics. Based on 16S rRNA analysis, similar species have been placed in its group.

<i>Pseudomonas syringae</i> Species of bacterium

Pseudomonas syringae is a rod-shaped, Gram-negative bacterium with polar flagella. As a plant pathogen, it can infect a wide range of species, and exists as over 50 different pathovars, all of which are available to researchers from international culture collections such as the NCPPB, ICMP, and others.

Pseudomonas avellanae is a Gram-negative plant pathogenic bacterium. It is the causal agent of bacterial canker of hazelnut. Based on 16S rRNA analysis, P. avellanae has been placed in the P. syringae group. This species was once included as a pathovar of Pseudomonas syringae, but following DNA-DNA hybridization, it was instated as a separate species. Following ribotypical analysis Pseudomonas syringae pv. theae was incorporated into this species.

Pseudomonas caricapapayae is a Gram-negative soil bacterium that is pathogenic to plants. It was originally isolated on papaya in Brazil. Based on 16S rRNA analysis, P. caricapapayae has been placed in the P. syringae group.

<i>Pseudomonas savastanoi</i> Species of bacterium

Pseudomonas savastanoi is a gram-negative plant pathogenic bacterium that infects a variety of plants. It was once considered a pathovar of Pseudomonas syringae, but following DNA-relatedness studies, it was instated as a new species. It is named after Savastano, a worker who proved between 1887 and 1898 that olive knot are caused by bacteria.

Pseudomonas citronellolis is a Gram-negative, bacillus bacterium that is used to study the mechanisms of pyruvate carboxylase. It was first isolated from forest soil, under pine trees, in northern Virginia, United States.

<i>Pseudomonas fulva</i> Species of bacterium

Pseudomonas fulva is a Gram-negative environmental bacterium, originally isolated from rice and commonly associated with rice plants, grains and paddy fields. It is rod-shaped and motile using one to three polar flagella.

Pseudomonas amygdali is a Gram-negative plant pathogenic bacterium. It is named after its ability to cause disease on almond trees. Different analyses, including 16S rRNA analysis, DNA-DNA hybridization, and MLST clearly placed P. amygdali in the P. syringae group together with the species Pseudomonas ficuserectae and Pseudomonas meliae, and 27 pathovars of Pseudomonas syringae/Pseudomonas savastanoi, constituting a single, well-defined phylogenetic group which should be considered as a single species. This phylogenetic group has not been formally named because of the lack of reliable means to differentiate it phenotypically from closely related species, and it is currently known as either genomospecies 2 or phylogroup 3. When it is formally named, the correct name for this new species should be Pseudomonas amygdali, which takes precedence over all the other names of taxa from this group, including Pseudomonas savastanoi, which is and inadequate and confusing name whose use is not recommended.

Pseudomonas monteilii is a Gram-negative, rod-shaped, motile bacterium isolated from human bronchial aspirate. P. monteilii grows in temperatures below 40 degrees Celsius. The species is capable of respiratory metabolism, but not fermentative metabolism. Laboratory observations were made on the species' production of fluorescent pigments, cytochrome oxidases, and catalases. The species is named in honor of the French microbiologist Henri Monteil.

<i>Pseudomonas cannabina</i> Species of bacterium

Pseudomonas cannabina is a gray, Gram-negative, fluorescent, motile, flagellated, aerobic bacterium that causes leaf and stem rot of hemp, from which it derives its name. It was formerly classified as a pathovar of Pseudomonas syringae, but following ribotypical analysis, it was reinstated as a species. The type strain is CFBP 2341.

<i>Pseudomonas stutzeri</i> Species of bacterium

Pseudomonas stutzeri is a Gram-negative soil bacterium that is motile, has a single polar flagellum, and is classified as bacillus, or rod-shaped. While this bacterium was first isolated from human spinal fluid, it has since been found in many different environments due to its various characteristics and metabolic capabilities. P. stutzeri is an opportunistic pathogen in clinical settings, although infections are rare. Based on 16S rRNA analysis, this bacterium has been placed in the P. stutzeri group, to which it lends its name.

<span class="mw-page-title-main">RsmX</span>

The rsmX gene is part of the Rsm/Csr family of non-coding RNAs (ncRNAs). Members of the Rsm/Csr family are present in a diverse range of bacteria, including Escherichia coli, Erwinia, Salmonella, Vibrio and Pseudomonas. These ncRNAs act by sequestering translational repressor proteins, called RsmA, activating expression of downstream genes that would normally be blocked by the repressors. Sequestering of target proteins is dependent upon exposed GGA motifs in the stem loops of the ncRNAs. Typically, the activated genes are involved in secondary metabolism, biofilm formation and motility.

<span class="mw-page-title-main">Pyoverdine</span> Chemical compound

Pyoverdines are fluorescent siderophores produced by certain pseudomonads. Pyoverdines are important virulence factors, and are required for pathogenesis in many biological models of infection. Their contributions to bacterial pathogenesis include providing a crucial nutrient, regulation of other virulence factors, supporting the formation of biofilms, and are increasingly recognized for having toxicity themselves.

<span class="mw-page-title-main">2,4-Diacetylphloroglucinol</span> Chemical compound

2,4-Diacetylphloroglucinol or Phl is a natural phenol found in several bacteria:

Pseudomonas protegens are widespread Gram-negative, plant-protecting bacteria. Some of the strains of this novel bacterial species previously belonged to P. fluorescens. They were reclassified since they seem to cluster separately from other fluorescent Pseudomonas species. P. protegens is phylogenetically related to the Pseudomonas species complexes P. fluorescens, P. chlororaphis, and P. syringae. The bacterial species characteristically produces the antimicrobial compounds pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) which are active against various plant pathogens.

References

  1. Kennedy C, Rudnick P, MacDonald ML, Melton T (2015). "Azotobacter". Bergey's Manual of Systematics of Archaea and Bacteria. pp. 1–33. doi:10.1002/9781118960608.gbm01207. ISBN   9781118960608.
  2. Skerman, McGowan; Sneath (1980). "Approved Lists of Bacterial Names". Int. J. Syst. Bacteriol. 30: 225–420. doi: 10.1099/00207713-30-1-225 .
  3. 1 2 Cornelis P (editor). (2008). Pseudomonas: Genomics and Molecular Biology (1st ed.). Caister Academic Press. ISBN   978-1-904455-19-6. .{{cite book}}: |author= has generic name (help)
  4. Rediers H, Vanderleyden J, De Mot R (2004). "Azotobacter vinelandii: a Pseudomonas in disguise?". Microbiology. 150 (Pt 5): 1117–9. doi: 10.1099/mic.0.27096-0 . PMID   15133068.
  5. Carmeli, Y; Troillet, N; Eliopoulos, GM; Samore, MH (1999). "Emergence of Antibiotic-Resistant Pseudomonas aeruginosa: Comparison of Risks Associated with Different Antipseudomonal Agents". Antimicrobial Agents and Chemotherapy. 43 (6): 1379–82. doi:10.1128/AAC.43.6.1379. PMC   89282 . PMID   10348756.
  6. Meyer J (2000). "Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species". Arch Microbiol. 174 (3): 135–42. doi:10.1007/s002030000188. PMID   11041343. S2CID   13283224.
  7. Krieg, N.R. (Ed.) (1984) Bergey's Manual of Systematic Bacteriology, Volume 1. Williams & Wilkins. ISBN   0-683-04108-8