Steven M. Smith

Last updated

Steven M. Smith
Professor Steven M Smith.JPG
Steven Smith at the Stone Forest in China
Born
Luton, Bedfordshire, England, UK
NationalityAustralian and British
Alma mater University of Leicester (BSc)
Indiana University (MA)
University of Warwick (PhD)
Known for Karrikins
SpouseDr Brenda Winning
ChildrenOne daughter
AwardsFellowship of the Institute of Biology (1998)
Australian Research Council, Federation Fellowship (2004)
Chinese Academy of Sciences, Visiting Professorship (2013)
Chinese Academy of Sciences, President’s International Fellowship, (2014)
Scientific career
FieldsPlant Genetics and Biochemistry
Institutions Rothamsted Experimental Station
Commonwealth Scientific and Industrial Research Organisation

John Innes Institute
University of Edinburgh
University of Western Australia
Chinese Academy of Sciences Institute of Genetics and Developmental Biology

Contents

University of Tasmania
Thesis Synthesis of the small subunit of ribulose-1,5-bisphosphate carboxylase
Doctoral advisor R. John Ellis
Doctoral students Ian A. Graham [1] [2]
Websitewww.stevensmithresearch.com

Steven M. Smith is Emeritus Professor of Plant Genetics and Biochemistry at the University of Tasmania in Australia and Chief Investigator in the Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture.

Education and early life

Smith was born and raised in Luton, Bedfordshire, England. He attended Luton Grammar School and Luton Sixth Form College before becoming an Assistant Scientific Officer at Rothamsted Experimental Station in Harpenden, Hertfordshire. Working at Rothamsted inspired him to embark on a career in plant sciences and he obtained university entrance qualifications through ‘day-release’ and evening classes at Luton College of Technology.

Career

He was awarded first class honours in Biological Sciences from the University of Leicester, then went to Indiana University USA to study for a master's degree under the supervision of Carlos Miller, the discoverer of kinetin. Smith returned to the UK to study for a PhD under the supervision of Professor R. John Ellis, at the University of Warwick during which time he conducted some of his research at the Plant Breeding Institute, in Cambridge. He was then awarded a Fellowship to carry out research at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Division of Plant Industry in Canberra, Australia. After a short period at the John Innes Institute in Norwich, he was appointed to a lectureship in the Botany Department at the University of Edinburgh. He spent 20 years in Edinburgh rising to become Head of the Institute of Molecular Plant Sciences. He served the Scottish Higher Education Funding Council as a Teaching Quality Assessor and was External Examiner at Ngee Ann Polytechnic in Singapore. Following the award of an Australian Research Council Federation Fellowship in 2004, Smith moved to the University of Western Australia and became Winthrop Professor of Plant Genomics. He was founding member of the Australian Research Council Centre of Excellence in Plant Energy Biology in 2005, and was a Chief Investigator until 2014. He also established and was Director of the Centre of Excellence for Plant Metabolomics. In 2015 he was appointed Professor of Plant Genetics and Biochemistry in the School of Biological Sciences at the University of Tasmania. In 2013 and 2014 he was awarded Fellowships by the Chinese Academy of Sciences and appointed Visiting Professor in the Institute of Genetics and Developmental Biology in Beijing.

Research

Smith's research is directed towards understanding plant growth and development at the molecular level, and seeking ways to improve plant productivity and value.

During his PhD studies Smith collaborated with John Bedbrook at the Plant Breeding Institute to clone the first cDNA encoding a plant enzyme. [3] This enzyme is ribulose-1,5-bisphosphate carboxylase/oxygenase, abbreviated to RuBisCO, which is responsible for carbon dioxide fixation by plants. In Edinburgh in the pre-genomics era, he collaborated with Chris Leaver and cloned several key enzymes of plant metabolism, including malate synthase, isocitrate lyase and PEP carboxykinase. He conceived an idea with Anthony Trewavas of creating transgenic plants expressing the calcium-sensitive luminous jellyfish protein, aequorin, to report calcium signalling in plants. Together they obtained funding, created the plants and showed that they could report rapid calcium signalling in response to cold, fungi, touch and wind. [4] [5] This work predated similar research using green fluorescent protein from the same jellyfish. In 1996 Smith and his PhD student Takeshi Takaha reported the discovery of cyclic glucans containing up to 200 glucose residues, which they named cycloamylose. [6] Cycloamylose and related cycloglucans are now used extensively in food and biotechnology industries. Further research on starch metabolism with Alison Smith and Sam Zeeman at the John Innes Centre led to the discovery of a novel pathway of starch breakdown in leaves. [7] Smith was also instrumental in defining pathways of energy metabolism involving peroxisomes, particularly fatty acid beta-oxidation and the glyoxylate cycle. [8]

Karrikins: a new family of plant growth regulators

Smith's current and most important contribution to plant biology lies in the establishment of karrikins as a major family of naturally occurring plant growth regulators, determination of karrikin mode of action and evolution of the karrikin response. [9] [10] [11] [12] [13] [14] Karrikins are small organic compounds produced by bushfires. They are washed into the soil by rain and stimulate germination of dormant seeds of fire-following plants that reside in the soil seed-bank. [15] This response to karrikins is a specific evolutionary adaption of numerous fire-following plant species, providing them with the opportunity to grow and reproduce successfully in the post-fire environment. [16]

Smith discovered that Arabidopsis thaliana can respond to karrikins under specific conditions and this provided the breakthrough required to discover their mode of action. [17] His group was able to isolate karrikin-insensitive mutants in Arabidopsis, and the subsequent identification of the mutated genes revealed that karrikin perception and response required an alpha/beta hydrolase known as KARRIKIN INSENSITIVE 2 (KAI2) and an F-box protein known as MORE AXILARY GROWTH2 (MAX2). [18] [19] These discoveries revealed that karrikin signalling occurs by a similar mechanism to the signalling of chemically-related strigolactone hormones. [20] Crucially, he established that karrikins and strigolactones are perceived independently, and elicit different responses in plants. [19] [21]

His research has further revealed that the usual function of KAI2 is to perceive an endogenous signalling compound that is neither karrikin nor strigolactone, but is probably very similar. [22] [23] He proposes that duplication of an ancestral KAI2 gene in early land plants led to the evolution of two genes in seed plants one of which perceives strigoactones and the other perceives the endogenous karrikin-like compound. [24] [25]

Awards and recognition

Personal

Smith is married to Dr Brenda Winning and they have one daughter, born in 1998. Smith is a side drummer in the City of Hobart Highland Pipe Band.

Related Research Articles

<i>Arabidopsis thaliana</i> Model plant species in the family Brassicaceae

Arabidopsis thaliana, the thale cress, mouse-ear cress or arabidopsis, is a small plant from the mustard family (Brassicaceae), native to Eurasia and Africa. Commonly found along the shoulders of roads and in disturbed land, it is generally considered a weed.

<span class="mw-page-title-main">Vernalization</span> Induction of a plants flowering process

Vernalization is the induction of a plant's flowering process by exposure to the prolonged cold of winter, or by an artificial equivalent. After vernalization, plants have acquired the ability to flower, but they may require additional seasonal cues or weeks of growth before they will actually do so. The term is sometimes used to refer to the need of herbal (non-woody) plants for a period of cold dormancy in order to produce new shoots and leaves, but this usage is discouraged.

<span class="mw-page-title-main">Plant hormone</span> Chemical compounds that regulate plant growth and development

Plant hormones are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, including embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and reproductive development. Unlike in animals each plant cell is capable of producing hormones. Went and Thimann coined the term "phytohormone" and used it in the title of their 1937 book.

<span class="mw-page-title-main">Cytokinin</span> Class of plant hormones promoting cell division

Cytokinins (CK) are a class of plant hormones that promote cell division, or cytokinesis, in plant roots and shoots. They are involved primarily in cell growth and differentiation, but also affect apical dominance, axillary bud growth, and leaf senescence.

Gibberellins (GAs) are plant hormones that regulate various developmental processes, including stem elongation, germination, dormancy, flowering, flower development, and leaf and fruit senescence. GAs are one of the longest-known classes of plant hormone. It is thought that the selective breeding of crop strains that were deficient in GA synthesis was one of the key drivers of the "green revolution" in the 1960s, a revolution that is credited to have saved over a billion lives worldwide.

<span class="mw-page-title-main">Plant senescence</span> Process of aging in plants

Plant senescence is the process of aging in plants. Plants have both stress-induced and age-related developmental aging. Chlorophyll degradation during leaf senescence reveals the carotenoids, such as anthocyanin and xanthophylls, which are the cause of autumn leaf color in deciduous trees. Leaf senescence has the important function of recycling nutrients, mostly nitrogen, to growing and storage organs of the plant. Unlike animals, plants continually form new organs and older organs undergo a highly regulated senescence program to maximize nutrient export.

In developmental biology, photomorphogenesis is light-mediated development, where plant growth patterns respond to the light spectrum. This is a completely separate process from photosynthesis where light is used as a source of energy. Phytochromes, cryptochromes, and phototropins are photochromic sensory receptors that restrict the photomorphogenic effect of light to the UV-A, UV-B, blue, and red portions of the electromagnetic spectrum.

Shade avoidance is a set of responses that plants display when they are subjected to the shade of another plant. It often includes elongation, altered flowering time, increased apical dominance and altered partitioning of resources. This set of responses is collectively called the shade-avoidance syndrome (SAS).

<span class="mw-page-title-main">Parasitic plant</span> Type of plant that derives some or all of its nutritional requirements from another living plant

A parasitic plant is a plant that derives some or all of its nutritional requirements from another living plant. They make up about 1% of angiosperms and are found in almost every biome. All parasitic plants develop a specialized organ called the haustorium, which penetrates the host plant, connecting them to the host vasculature – either the xylem, phloem, or both. For example, plants like Striga or Rhinanthus connect only to the xylem, via xylem bridges (xylem-feeding). Alternately, plants like Cuscuta and some members of Orobanche connect to both the xylem and phloem of the host. This provides them with the ability to extract resources from the host. These resources can include water, nitrogen, carbon and/or sugars. Parasitic plants are classified depending on the location where the parasitic plant latches onto the host, the amount of nutrients it requires, and their photosynthetic capability. Some parasitic plants can locate their host plants by detecting volatile chemicals in the air or soil given off by host shoots or roots, respectively. About 4,500 species of parasitic plants in approximately 20 families of flowering plants are known.

<span class="mw-page-title-main">Butenolide</span> Class of chemical compounds

Butenolides are a class of lactones with a four-carbon heterocyclic ring structure. They are sometimes considered oxidized derivatives of furan. The simplest butenolide is 2-furanone, which is a common component of larger natural products and is sometimes referred to as simply "butenolide". A common biochemically important butenolide is ascorbic acid. Butenolide derivatives known as karrikins are produced by some plants on exposure to high temperatures due to brush fires. In particular, 3-methyl-2H-furo[2,3-c]pyran-2-one was found to trigger seed germination in plants whose reproduction is fire-dependent.

<i>Brassica tournefortii</i> Species of flowering plant

Brassica tournefortii is a species of plant known by the common names Asian mustard, pale cabbage, African mustard, and Sahara mustard, and is well known as an invasive species, especially in California.

In botany, drought tolerance is the ability by which a plant maintains its biomass production during arid or drought conditions. Some plants are naturally adapted to dry conditions, surviving with protection mechanisms such as desiccation tolerance, detoxification, or repair of xylem embolism. Other plants, specifically crops like corn, wheat, and rice, have become increasingly tolerant to drought with new varieties created via genetic engineering. From an evolutionary perspective, the type of mycorrhizal associations formed in the roots of plants can determine how fast plants can adapt to drought.

<span class="mw-page-title-main">Karrikin</span> A plant growth regulator

Karrikins are a group of plant growth regulators found in the smoke of burning plant material. Karrikins help stimulate seed germination and plant development because they mimic a signaling hormone known as strigolactone. Strigolactones are hormones that help increase growth of symbiotic arbuscular mycorrhizal fungi in the soil, which enhances plant growth and leads to an increase in plant branching.

In molecular biology mir-398 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

<span class="mw-page-title-main">Ian A. Graham</span> British biologist (born 1963)

Ian Alexander Graham is a professor of Biochemical Genetics in the Centre for Novel Agricultural Products (CNAP) at the University of York.

<span class="mw-page-title-main">Strigolactone</span> Group of chemical compounds

Strigolactones are a group of chemical compounds produced by roots of plants. Due to their mechanism of action, these molecules have been classified as plant hormones or phytohormones. So far, strigolactones have been identified to be responsible for three different physiological processes: First, they promote the germination of parasitic organisms that grow in the host plant's roots, such as Strigalutea and other plants of the genus Striga. Second, strigolactones are fundamental for the recognition of the plant by symbiotic fungi, especially arbuscular mycorrhizal fungi, because they establish a mutualistic association with these plants, and provide phosphate and other soil nutrients. Third, strigolactones have been identified as branching inhibition hormones in plants; when present, these compounds prevent excess bud growing in stem terminals, stopping the branching mechanism in plants.

<span class="mw-page-title-main">Georg Jander</span> American plant biologist

Georg Jander is an American plant biologist at the Boyce Thompson Institute in Ithaca, New York. He has an adjunct appointment in the Plant Biology Section of the School of Integrative Plant Sciences at Cornell University. Jander is known for his molecular research identifying genes for biochemical compounds of ecological and agricultural importance, particularly those plant traits involved in resistance to insect pests.

June Nasrallah is Barbara McClintock Professor in the Plant Biology Section of the School of Integrative Plant Science at Cornell University. Her research focuses on plant reproductive biology and the cell-cell interactions that underlie self-incompatibility in plants belonging to the mustard (Brassicaceae) family. She was elected to the US National Academy of Sciences in 2003 for this work and her contributions generally to our understanding of receptor-based signaling in plants.

<span class="mw-page-title-main">Ethylene signaling pathway</span> Signaling pathway

Ethylene signaling pathway is a signal transduction in plant cells to regulate important growth and developmental processes. Acting as a plant hormone, the gas ethylene is responsible for promoting the germination of seeds, ripening of fruits, the opening of flowers, the abscission of leaves and stress responses. It is the simplest alkene gas and the first gaseous molecule discovered to function as a hormone.

Christoph Benning is a German–American plant biologist. He is an MSU Foundation Professor and University Distinguished Professor at Michigan State University. Benning's research into lipid metabolism in plants, algae and photosynthetic bacteria, led him to be named Editor-in-Chief of The Plant Journal in October 2008.

References

  1. Graham, Ian Alexander (1989). Structure and function of the cucumber malate synthase gene and expression during plant development (PhD thesis). University of Edinburgh. Open Access logo PLoS transparent.svg
  2. Graham, Ian A.; Smith, Laura M.; Brown, John W. S.; Leaver, Christopher J.; Smith, Steven M. (1989). "The malate synthase gene of cucumber". Plant Molecular Biology. 13 (6): 673–684. doi:10.1007/BF00016022. PMID   2491683. S2CID   23684986.
  3. Bedbrook, John R.; Smith, Steven M.; Ellis, R. John (23 October 1980). "Molecular cloning and sequencing of cDNA encoding the precursor to the small subunit of chloroplast ribulose-1,5-bisphosphate carboxylase". Nature. 287 (5784): 692–697. Bibcode:1980Natur.287..692B. doi:10.1038/287692a0. S2CID   4243808.
  4. Knight, Marc R.; Campbell, Anthony K.; Smith, Steven M.; Trewavas, Anthony J. (8 August 1991). "Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium". Nature. 352 (6335): 524–526. Bibcode:1991Natur.352..524K. doi:10.1038/352524a0. PMID   1865907. S2CID   4239898.
  5. Knight, M. R.; Smith, S. M.; Trewavas, A. J. (1 June 1992). "Wind-induced plant motion immediately increases cytosolic calcium". Proceedings of the National Academy of Sciences. 89 (11): 4967–4971. Bibcode:1992PNAS...89.4967K. doi: 10.1073/pnas.89.11.4967 . ISSN   0027-8424. PMC   49209 . PMID   11536497.
  6. Takaha, Takeshi; Yanase, Michiyo; Takata, Hiroki; Okada, Shigetaka; Smith, Steven M. (9 February 1996). "Potato D-enzyme Catalyzes the Cyclization of Amylose to Produce Cycloamylose, a Novel Cyclic Glucan". Journal of Biological Chemistry. 271 (6): 2902–2908. doi: 10.1074/jbc.271.6.2902 . ISSN   0021-9258. PMID   8621678.
  7. Smith, Alison M.; Zeeman, Samuel C.; Smith, Steven M. (1 January 2005). "Starch Degradation". Annual Review of Plant Biology. 56 (1): 73–98. doi:10.1146/annurev.arplant.56.032604.144257. PMID   15862090.
  8. Pracharoenwattana, Itsara; Cornah, Johanna E.; Smith, Steven M. (1 July 2005). "Arabidopsis Peroxisomal Citrate Synthase Is Required for Fatty Acid Respiration and Seed Germination". The Plant Cell. 17 (7): 2037–2048. doi:10.1105/tpc.105.031856. ISSN   1532-298X. PMC   1167550 . PMID   15923350.
  9. Flematti, Gavin R.; Dixon, Kingsley W; Smith, Steven M. (21 December 2015). "What are karrikins and how were they 'discovered' by plants?". BMC Biology. 13 (1): 108. doi: 10.1186/s12915-015-0219-0 . PMC   4687367 . PMID   26689715.
  10. Khan, Amina (30 March 2010). "Smoke linked to stronger, thicker plant growth". Los Angeles Times. ISSN   0458-3035 . Retrieved 3 September 2015.
  11. Vivian, Geoff. "Finding the signalling system for plant 'smoke' response" . Retrieved 3 September 2015.
  12. "Groundbreaking plant scientist joined the University of Tasmania". 4 December 2014. Retrieved 3 September 2015.
  13. "Bushfire science helping seeds germinate quicker and stronger". ABC Rural. 30 June 2014. Retrieved 3 September 2015.
  14. "Chemicals in smoke can help forests regenerate after fire | Pacific Beat". www.radioaustralia.net.au. Retrieved 3 September 2015.
  15. Nelson, David C.; Riseborough, Julie-Anne; Flematti, Gavin R.; Stevens, Jason; Ghisalberti, Emilio L.; Dixon, Kingsley W.; Smith, Steven M. (1 February 2009). "Karrikins Discovered in Smoke Trigger Arabidopsis Seed Germination by a Mechanism Requiring Gibberellic Acid Synthesis and Light". Plant Physiology. 149 (2): 863–873. doi:10.1104/pp.108.131516. ISSN   1532-2548. PMC   2633839 . PMID   19074625.
  16. Nelson, David C.; Flematti, Gavin R.; Riseborough, Julie-Anne; Ghisalberti, Emilio L.; Dixon, Kingsley W.; Smith, Steven M. (13 April 2010). "Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana". Proceedings of the National Academy of Sciences. 107 (15): 7095–7100. Bibcode:2010PNAS..107.7095N. doi: 10.1073/pnas.0911635107 . ISSN   0027-8424. PMC   2872431 . PMID   20351290.
  17. Nelson, David C.; Scaffidi, Adrian; Dun, Elizabeth A.; Waters, Mark T.; Flematti, Gavin R.; Dixon, Kingsley W.; Beveridge, Christine A.; Ghisalberti, Emilio L.; Smith, Steven M. (24 May 2011). "F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana". Proceedings of the National Academy of Sciences. 108 (21): 8897–8902. Bibcode:2011PNAS..108.8897N. doi: 10.1073/pnas.1100987108 . ISSN   0027-8424. PMC   3102411 . PMID   21555559.
  18. Nelson, David C.; Flematti, Gavin R.; Ghisalberti, Emilio L.; Dixon, Kingsley W.; Smith, Steven M. (1 January 2012). "Regulation of Seed Germination and Seedling Growth by Chemical Signals from Burning Vegetation". Annual Review of Plant Biology. 63 (1): 107–130. doi:10.1146/annurev-arplant-042811-105545. PMID   22404467.
  19. 1 2 Waters, Mark T.; Nelson, David C.; Scaffidi, Adrian; Flematti, Gavin R.; Sun, Yueming K.; Dixon, Kingsley W.; Smith, Steven M. (1 April 2012). "Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis". Development. 139 (7): 1285–1295. doi: 10.1242/dev.074567 . ISSN   0950-1991. PMID   22357928.
  20. Smith, Steven M. (1 January 2013). "Plant biology: Witchcraft and destruction". Nature. 504 (7480): 384–385. Bibcode:2013Natur.504..384S. doi: 10.1038/nature12843 . PMID   24336204.
  21. Smith, Steven M; Li, Jiayang (1 October 2014). "Signalling and responses to strigolactones and karrikins". Current Opinion in Plant Biology. SI: Cell signalling and gene regulation. 21: 23–29. doi:10.1016/j.pbi.2014.06.003. PMID   24996032.
  22. Scaffidi, Adrian; Waters, Mark T.; Ghisalberti, Emilio L.; Dixon, Kingsley W.; Flematti, Gavin R.; Smith, Steven M. (1 October 2013). "Carlactone-independent seedling morphogenesis in Arabidopsis". The Plant Journal. 76 (1): 1–9. doi: 10.1111/tpj.12265 . ISSN   1365-313X. PMID   23773129.
  23. Scaffidi, Adrian; Waters, Mark T.; Sun, Yueming K.; Skelton, Brian W.; Dixon, Kingsley W.; Ghisalberti, Emilio L.; Flematti, Gavin R.; Smith, Steven M. (1 July 2014). "Strigolactone Hormones and Their Stereoisomers Signal through Two Related Receptor Proteins to Induce Different Physiological Responses in Arabidopsis". Plant Physiology. 165 (3): 1221–1232. doi:10.1104/pp.114.240036. ISSN   1532-2548. PMC   4081333 . PMID   24808100.
  24. Waters, Mark T.; Scaffidi, Adrian; Sun, Yueming K.; Flematti, Gavin R.; Smith, Steven M. (1 August 2014). "The karrikin response system of Arabidopsis". The Plant Journal. 79 (4): 623–631. doi: 10.1111/tpj.12430 . ISSN   1365-313X. PMID   24433542.
  25. Waters, Mark T.; Scaffidi, Adrian; Moulin, Solène L. Y.; Sun, Yueming K.; Flematti, Gavin R.; Smith, Steven M. (1 July 2015). "A Selaginella moellendorffii Ortholog of KARRIKIN INSENSITIVE2 Functions in Arabidopsis Development but Cannot Mediate Responses to Karrikins or Strigolactones". The Plant Cell. 27 (7): 1925–1944. doi:10.1105/tpc.15.00146. ISSN   1532-298X. PMC   4531350 . PMID   26175507.
  26. "HCR Clarivate Analytics". HCR Clarivate Analytics. Retrieved 23 November 2016.