Ian A. Graham

Last updated

Ian Graham
FRS
Professor Ian Graham FRS (cropped).jpg
Graham in 2016
Born1963 (age 6061) [1]
Castlederg, Northern Ireland [1]
Education Omagh Academy [1]
Alma mater
Awards EMBO Member (2016)
Scientific career
Institutions
Thesis Structure and function of the cucumber malate synthase gene and expression during plant development  (1989)
Doctoral advisor
Website york.ac.uk/biology/research/plant-biology/ian-a-graham/

Ian Alexander Graham FRS [2] (born 1963) [1] is a professor of Biochemical Genetics in the Centre for Novel Agricultural Products (CNAP) at the University of York. [3] [4] [5]

Contents

Education

Graham was educated at Castlederg Secondary School and Omagh Academy. [1] He studied Botany and Genetics at Queen's University Belfast where he was awarded a Bachelor of Science degree in 1986. [3] He was awarded a PhD from the University of Edinburgh in 1989 for research investigating the structure and function of the malate synthase gene in cucumber supervised by Steven M. Smith and Chris J. Leaver. [6] [7]

Career and research

From 1990 to 1993 he was a postdoctoral researcher in the Department of Plant Sciences at the University of Oxford. [8] He was appointed a lecturer in the division of Biochemistry and Molecular Biology at University of Glasgow from 1994 to 1999. During 1994, he was a SERC/NATO funded research scientist in Department of Plant Biology at Stanford University. He has been Chair of Biochemical Genetics at York since 1999.

Graham's interests include how plants make and breakdown various metabolites, how these processes are controlled and how they impact on plant growth. He has used biochemical genetics to dissect the main metabolic pathways controlling oil mobilisation in Arabidopsis [9] [10] seed and provided new insight into how a lipid based signal controls seed germination. [11] [12] He has used similar approaches to investigate the synthesis of bioactive compounds in two of the world's major medicinal plants. This has led to new understanding of how genome rearrangement has shaped the evolution of plant metabolism. The discovery of a 10 gene cluster responsible for the production of the anti-cancer compound noscapine in opium poppy provided the tools for molecular breeding of new commercial varieties. The discovery of a novel Cytochrome P450oxidoreductase gene fusion described the last unknown step in synthesis of morphine and codeine. Characterisation and genetic mapping of traits responsible for production of artemisinin in Artemisia annua has enabled development of F1 hybrid seed that can deliver a robust source of this vital antimalarial medication for the developing countries. [13]

Awards and honours

Graham was elected a Fellow of the Royal Society (FRS) in 2016. [2] Additionally, Graham was elected as a member of the European Molecular Biology Organization (EMBO) in 2016,[ citation needed ] and was awarded the Biochemical Society's Heatley Medal and Prize in 2017.[ citation needed ]

Related Research Articles

Gibberellins (GAs) are plant hormones that regulate various developmental processes, including stem elongation, germination, dormancy, flowering, flower development, and leaf and fruit senescence. GAs are one of the longest-known classes of plant hormone. It is thought that the selective breeding of crop strains that were deficient in GA synthesis was one of the key drivers of the "green revolution" in the 1960s, a revolution that is credited to have saved over a billion lives worldwide.

<i>Artemisia annua</i> Herb known as sweet wormwood used to treat malaria

Artemisia annua, also known as sweet wormwood, sweet annie, sweet sagewort, annual mugwort or annual wormwood, is a common type of wormwood native to temperate Asia, but naturalized in many countries including scattered parts of North America.

<span class="mw-page-title-main">Artemisinin</span> Group of drugs used against malaria

Artemisinin and its semisynthetic derivatives are a group of drugs used in the treatment of malaria due to Plasmodium falciparum. It was discovered in 1972 by Tu Youyou, who shared the 2015 Nobel Prize in Physiology or Medicine for her discovery. Artemisinin-based combination therapies (ACTs) are now standard treatment worldwide for P. falciparum malaria as well as malaria due to other species of Plasmodium. Artemisinin is extracted from the plant Artemisia annua a herb employed in Chinese traditional medicine. A precursor compound can be produced using a genetically engineered yeast, which is much more efficient than using the plant.

Christopher John Leaver is an Emeritus Professorial Fellow of St John's College, Oxford who served as Sibthorpian Professor in the Department of Plant Sciences at the University of Oxford from 1990 to 2007.

<span class="mw-page-title-main">Glyoxylate cycle</span> Series of interconnected biochemical reactions

The glyoxylate cycle, a variation of the tricarboxylic acid cycle, is an anabolic pathway occurring in plants, bacteria, protists, and fungi. The glyoxylate cycle centers on the conversion of acetyl-CoA to succinate for the synthesis of carbohydrates. In microorganisms, the glyoxylate cycle allows cells to use two carbons, such as acetate, to satisfy cellular carbon requirements when simple sugars such as glucose or fructose are not available. The cycle is generally assumed to be absent in animals, with the exception of nematodes at the early stages of embryogenesis. In recent years, however, the detection of malate synthase (MS) and isocitrate lyase (ICL), key enzymes involved in the glyoxylate cycle, in some animal tissue has raised questions regarding the evolutionary relationship of enzymes in bacteria and animals and suggests that animals encode alternative enzymes of the cycle that differ in function from known MS and ICL in non-metazoan species.

<span class="mw-page-title-main">Jay Keasling</span> American biologist

Jay D. Keasling is a professor of chemical engineering and bioengineering at the University of California, Berkeley. He is also associate laboratory director for biosciences at the Lawrence Berkeley National Laboratory and chief executive officer of the Joint BioEnergy Institute. He is considered one of the foremost authorities in synthetic biology, especially in the field of metabolic engineering.

<span class="mw-page-title-main">David Baulcombe</span> British plant scientist and geneticist

Sir David Charles Baulcombe is a British plant scientist and geneticist. As of 2017 he is a Royal Society Research Professor. From 2007 to 2020 he was Regius Professor of Botany in the Department of Plant Sciences at the University of Cambridge.

In enzymology, an L-2-hydroxyglutarate dehydrogenase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Isocitrate lyase</span>

Isocitrate lyase, or ICL, is an enzyme in the glyoxylate cycle that catalyzes the cleavage of isocitrate to succinate and glyoxylate. Together with malate synthase, it bypasses the two decarboxylation steps of the tricarboxylic acid cycle and is used by bacteria, fungi, and plants.

The enzyme amorpha-4,11-diene synthase (ADS) catalyzes the chemical reaction

<span class="mw-page-title-main">Malate synthase</span> Class of enzymes

In enzymology, a malate synthase (EC 2.3.3.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Ottoline Leyser</span> English botanist (born 1965)

Dame Henrietta Miriam Ottoline Leyser is a British plant biologist and Regius Professor of Botany at the University of Cambridge who is on secondment as CEO of UK Research and Innovation (UKRI). From 2013 to 2020 she was the director of the Sainsbury Laboratory, Cambridge.

<span class="mw-page-title-main">Caroline Dean</span> British botanist

Dame Caroline Dean is a British plant scientist working at the John Innes Centre. She is focused on understanding the molecular controls used by plants to seasonally judge when to flower. She is specifically interested in vernalisation — the acceleration of flowering in plants by exposure to periods of prolonged cold. She has also been on the Life Sciences jury for the Infosys Prize from 2018.

Michael Webster Bevan is a professor at the John Innes Centre, Norwich, UK.

<span class="mw-page-title-main">Liam Dolan</span>

Liam Dolan is a Senior Group Leader at the Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, the Sherardian Professor of Botany in the Department of Biology at the University of Oxford and a Fellow of Magdalen College, Oxford.

WRKY transcription factors are proteins that bind DNA. They are transcription factors that regulate many processes in plants and algae (Viridiplantae), such as the responses to biotic and abiotic stresses, senescence, seed dormancy and seed germination and some developmental processes but also contribute to secondary metabolism.

<span class="mw-page-title-main">Jane A. Langdale</span> British geneticist and academic

Jane Alison Langdale, is a British geneticist and academic. She is Professor of Plant Development in the Department of Biology at the University of Oxford and a Professorial Fellow at The Queen's College, Oxford.

<span class="mw-page-title-main">Li Jiayang</span> Chinese agronomist, Vice Minister of Agriculture (born 1956)

Li Jiayang is a Chinese agronomist and geneticist. He is Vice Minister of Agriculture in China and President of the Chinese Academy of Agricultural Sciences (CAAS). He is also Professor and Principal investigator at the Institute of Genetics and Development at the Chinese Academy of Sciences (CAS).

<span class="mw-page-title-main">Steven M. Smith</span>

Steven M. Smith is Emeritus Professor of Plant Genetics and Biochemistry at the University of Tasmania in Australia and Chief Investigator in the Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture.

Robert Anthony Martienssen is a British plant biologist, Howard Hughes Medical Institute–Gordon and Betty Moore Foundation investigator, and professor at Cold Spring Harbor Laboratory, US.

References

  1. 1 2 3 4 5 "GRAHAM, Prof. Ian Alexander" . Who's Who . Vol. 2017 (online Oxford University Press  ed.). Oxford: A & C Black.(Subscription or UK public library membership required.)
  2. 1 2 Anon (2016). "Professor Ian Graham FRS". London: Royal Society. Archived from the original on 29 April 2016. One or more of the preceding sentences incorporates text from the royalsociety.org website where:
    "All text published under the heading 'Biography' on Fellow profile pages is available under Creative Commons Attribution 4.0 International License." -- "Royal Society Terms, conditions and policies". Archived from the original on 25 September 2015. Retrieved 9 March 2016.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  3. 1 2 Anon (2016). "Professor Ian A Graham: Weston Chair of Biochemical Genetics". York: University of York. Archived from the original on 3 April 2015.
  4. Ian A. Graham publications indexed by Google Scholar OOjs UI icon edit-ltr-progressive.svg
  5. Ian A. Graham publications from Europe PubMed Central
  6. Graham, Ian Alexander (1989). Structure and function of the cucumber malate synthase gene and expression during plant development. ethos.bl.uk (PhD thesis). University of Edinburgh. hdl:1842/12057. OCLC   53575596. Open Access logo PLoS transparent.svg
  7. Graham, Ian A.; Smith, Laura M.; Brown, John W. S.; Leaver, Christopher J.; Smith, Steven M. (1989). "The malate synthase gene of cucumber". Plant Molecular Biology. 13 (6): 673–684. doi:10.1007/BF00016022. PMID   2491683. S2CID   23684986.
  8. Graham, I. A.; Denby, K. J.; Leaver, C. J. (1994). "Carbon Catabolite Repression Regulates Glyoxylate Cycle Gene Expression in Cucumber". The Plant Cell. 6 (5): 761–772. doi:10.1105/tpc.6.5.761. ISSN   1532-298X. PMC   160474 . PMID   12244257.
  9. Graham, Ian A. (2008). "Seed Storage Oil Mobilization". Annual Review of Plant Biology. 59 (1): 115–142. doi:10.1146/annurev.arplant.59.032607.092938. PMID   18444898.
  10. Dave, Anuja; Vaistij, Fabián E.; Gilday, Alison D.; Penfield, Steven D.; Graham, Ian A. (2016). "Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid". Journal of Experimental Botany . 67 (8): 2277–2284. doi:10.1093/jxb/erw028. ISSN   1460-2431. PMC   4809285 . PMID   26873978. Open Access logo PLoS transparent.svg
  11. Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John (2013). "Acyl-Lipid Metabolism". The Arabidopsis Book. 11: e0161. doi:10.1199/tab.0161. PMC   3244904 . PMID   22303259.
  12. Eastmond, Peter J.; van Dijken, Anja J. H.; Spielman, Melissa; Kerr, Aimie; Tissier, Alain F.; Dickinson, Hugh G.; Jones, Jonathan D. G.; Smeekens, Sjef C.; Graham, Ian A. (2002). "Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation". The Plant Journal. 29 (2): 225–235. doi: 10.1046/j.1365-313x.2002.01220.x . PMID   11851922.
  13. Graham, I. A.; Besser, K.; Blumer, S.; Branigan, C. A.; Czechowski, T.; Elias, L.; Guterman, I.; Harvey, D.; Isaac, P. G.; Khan, A. M.; Larson, T. R.; Li, Y.; Pawson, T.; Penfield, T.; Rae, A. M.; Rathbone, D. A.; Reid, S.; Ross, J.; Smallwood, M. F.; Segura, V.; Townsend, T.; Vyas, D.; Winzer, T.; Bowles, D. (2010). "The Genetic Map of Artemisia annua L. Identifies Loci Affecting Yield of the Antimalarial Drug Artemisinin". Science . 327 (5963): 328–331. Bibcode:2010Sci...327..328G. doi:10.1126/science.1182612. PMID   20075252. S2CID   31535948.(subscription required)