Stone mastic asphalt

Last updated

Stone mastic asphalt (SMA), also called stone-matrix asphalt, was developed in Germany in the 1960s with the first SMA pavements being placed in 1968 near Kiel. [1] It provides a deformation-resistant, durable surfacing material, suitable for heavily trafficked roads. SMA has found use in Europe, Australia, the United States, and Canada as a durable asphalt surfacing option for residential streets and highways. SMA has a high coarse aggregate content that interlocks to form a stone skeleton that resists permanent deformation. The stone skeleton is filled with a mastic of bitumen and filler to which fibres are added to provide adequate stability of bitumen and to prevent drainage of binder during transport and placement. Typical SMA composition consists of 70−80% coarse aggregate, 8−12% filler, 6.0−7.0% binder, and 0.3 per cent fibre.

Contents

SMA and DGA.jpg

The deformation resistant capacity of SMA stems from a coarse stone skeleton providing more stone-on-stone contact than with conventional dense graded asphalt (DGA) mixes (see above picture). Improved binder durability is a result of higher bitumen content, a thicker bitumen film, and lower air voids content. This high bitumen content also improves flexibility. Addition of a small quantity of cellulose or mineral fibre prevents drainage of bitumen during transport and placement. There are no precise design guidelines for SMA mixes available in Europe. The essential features, which are the coarse aggregate skeleton and mastic composition, and the consequent surface texture and mixture stability, are largely determined by the selection of aggregate grading and the type and proportion of filler and binder. In the US, detailed mix design guidelines have been developed for SMA and published by the US National Asphalt Pavement Association in their Quality Improvement Publication QIP 122 as given in the references.

Manufacture

SMA is mixed and placed in the same plant as that used with conventional hot mix. In batch plants, the fibre additive is added direct to the pugmill using individually wrapped press packs or bulk dispensing equipment. Mixing times may be extended to ensure that fibre is homogeneously distributed throughout the mix and temperatures controlled in order to avoid overheating or damage to the fibre. In drum plants, particular care must be taken to ensure that both the additional filler content and fibre additive are incorporated into the mixture without excessive losses through the dust extraction system. Filler systems that add filler directly into the drum rather than aggregate feed are preferred. Pelletised fibres may be added through systems designed for addition of recycled materials, but a more effective means is addition through a special delivery line that is combined with the bitumen delivery, so that the fibre is captured by bitumen at the point of addition to the mixture.

Placement

The primary difference in placing SMA, compared to DGA is in compaction procedures. Multi-tyred rollers are not used due to the possible working of binder-rich material to the surface of the asphalt and consequent flushing and pick-up. Trafficking of the newly placed asphalt while still warm may have the same effect and it is generally preferable for surfaces to cool below about 40 °C before opening to traffic. The preferred method of compaction is to use heavy, non-vibrating, steel-wheeled rollers. If these are not available, vibrating rollers may be used but vibration should be kept to a minimum to avoid fracture of coarse aggregate particles, or drawing of binder to the surface of the mix. The use of polymer modified binder may decrease mix workability and necessitate increased compactive effort to achieve high standards of compacted density. Achieving high standards of compacted density and low field air voids has been identified as an important factor in the performance of all SMA work. SMA is normally placed with a minimum layer thickness of 2.5 to 3 times the nominal maximum aggregate particle size. Greater layer thicknesses assist in achieving appropriate standards of compacted density.

Materials

Aggregates used in SMA must be of high quality – well shaped, resistant to crushing and of suitable polish resistance.

Binders used in SMA include:

Cellulose fibre is most commonly used in SMA work in Australia. Other fibre types, including glass fibre, rockwool, polyester, and even natural wool, have all been found to be suitable but cellulose fibre is generally the most cost-effective. Fibre content is generally 0.3% (by mass) of the total mix.

Advantages

Disadvantages


See also

Notes

  1. Waanders, G.; Els, H. (1995). "Splittmastixasphalt und Dränasphalt in den Niederlanden. Erfahrungen und Untersuchungen in der Provinz Overijsel". Asphalt. 95 (4): 8–17.

Related Research Articles

<span class="mw-page-title-main">Bitumen</span> Form of petroleum primarily used in road construction

Bitumen is a sticky, black, highly viscous liquid or semi-solid form of petroleum. In the U.S., it is commonly referred to as asphalt. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used. The word is derived from the Ancient Greek ἄσφαλτος ásphaltos. The largest natural deposit of bitumen in the world, estimated to contain 10 million tons, is the Pitch Lake in southwest Trinidad.

<span class="mw-page-title-main">Concrete</span> Composite construction material

Concrete is a composite material composed of fine and coarse aggregate bonded together with a fluid cement that hardens (cures) over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminum combined. Globally, the ready-mix concrete industry, the largest segment of the concrete market, is projected to exceed $600 billion in revenue by 2025. This widespread use results in a number of environmental impacts. Most notably, the production process for cement produces large volumes of greenhouse gas emissions, leading to net 8% of global emissions. Other environmental concerns include widespread illegal sand mining, impacts on the surrounding environment such as increased surface runoff or urban heat island effect, and potential public health implications from toxic ingredients. Significant research and development is being done to try to reduce the emissions or make concrete a source of carbon sequestration, and increase recycled and secondary raw materials content into the mix to achieve a circular economy. Concrete is expected to be a key material for structures resilient to climate disasters, as well as a solution to mitigate the pollution of other industries, capturing wastes such as coal fly ash or bauxite tailings and residue.

Tarmacadam is a road surfacing material made by combining crushed stone, tar, and sand, patented by Welsh inventor Edgar Purnell Hooley in 1902. It is a more durable and dust-free enhancement of simple compacted stone macadam surfaces invented by Scottish engineer John Loudon McAdam in the early 1800s.

<span class="mw-page-title-main">Road surface</span> Road covered with durable surface material

A road surface, or pavement, is the durable surface material laid down on an area intended to sustain vehicular or foot traffic, such as a road or walkway. In the past, gravel road surfaces, hoggin, cobblestone and granite setts were extensively used, but these have mostly been replaced by asphalt or concrete laid on a compacted base course. Asphalt mixtures have been used in pavement construction since the beginning of the 20th century and are of two types: metalled (hard-surfaced) and unmetalled roads. Metalled roadways are made to sustain vehicular load and so are usually made on frequently used roads. Unmetalled roads, also known as gravel roads, are rough and can sustain less weight. Road surfaces are frequently marked to guide traffic.

<span class="mw-page-title-main">Asphalt concrete</span> Composite material used for paving

Asphalt concrete is a composite material commonly used to surface roads, parking lots, airports, and the core of embankment dams. Asphalt mixtures have been used in pavement construction since the beginning of the twentieth century. It consists of mineral aggregate bound together with bitumen, laid in layers, and compacted. The process was refined and enhanced by Belgian-American inventor Edward De Smedt.

<span class="mw-page-title-main">Macadam</span> Road building method by John Loudon McAdam

Macadam is a type of road construction, pioneered by Scottish engineer John Loudon McAdam around 1820, in which crushed stone is placed in shallow, convex layers and compacted thoroughly. A binding layer of stone dust may form; it may also, after rolling, be covered with a cement or bituminous binder to keep dust and stones together. The method simplified what had been considered state-of-the-art at that point.

<span class="mw-page-title-main">Permeable paving</span> Roads built with water-pervious materials

Permeable paving surfaces are made of either a porous material that enables stormwater to flow through it or nonporous blocks spaced so that water can flow between the gaps. Permeable paving can also include a variety of surfacing techniques for roads, parking lots, and pedestrian walkways. Permeable pavement surfaces may be composed of; pervious concrete, porous asphalt, paving stones, or interlocking pavers. Unlike traditional impervious paving materials such as concrete and asphalt, permeable paving systems allow stormwater to percolate and infiltrate through the pavement and into the aggregate layers and/or soil below. In addition to reducing surface runoff, permeable paving systems can trap suspended solids, thereby filtering pollutants from stormwater.

<span class="mw-page-title-main">Pothole</span> Road surface disruption type

A pothole is a depression in a road surface, usually asphalt pavement, where traffic has removed broken pieces of the pavement. It is usually the result of water in the underlying soil structure and traffic passing over the affected area. Water first weakens the underlying soil; traffic then fatigues and breaks the poorly supported asphalt surface in the affected area. Continued traffic action ejects both asphalt and the underlying soil material to create a hole in the pavement.

A binder or binding agent is any material or substance that holds or draws other materials together to form a cohesive whole mechanically, chemically, by adhesion or cohesion.

Full depth recycling or full depth reclamation (FDR) is a process that rebuilds worn out asphalt pavements by recycling the existing roadway.

Soil cement is a construction material, a mix of pulverized natural soil with small amount of portland cement and water, usually processed in a tumbler, compacted to high density. Hard, semi-rigid durable material is formed by hydration of the cement particles.

<span class="mw-page-title-main">Asphalt shingle</span> Type of shingle

An asphalt shingle is a type of wall or roof shingle that uses asphalt for waterproofing. It is one of the most widely used roofing covers in North America because it has a relatively inexpensive up-front cost and is fairly simple to install.

<span class="mw-page-title-main">Chipseal</span> Pavement surface treatment

Chipseal is a pavement surface treatment that combines one or more layer(s) of asphalt with one or more layer(s) of fine aggregate. In the United States, chipseals are typically used on rural roads carrying lower traffic volumes, and the process is often referred to as asphaltic surface treatment. This type of surface has a variety of other names including tar-seal or tarseal, tar and chip, sprayed seal or surface dressing.

Mastic may refer to:

<span class="mw-page-title-main">Asphalt plant</span>

An asphalt plant is a plant used for the manufacture of asphalt, macadam and other forms of coated roadstone, sometimes collectively known as blacktop or asphalt concrete.

Asphalt most often refers to:

Otta seal is a type of bituminous surface treatment that was developed by the Norwegian Road Research Laboratory (NRRL). Its name is based on the location in which it was created, the Otta Valley. Otta seal was developed to be used as a temporary surfacing on new roads; however, after seeing its strength, it has been used as permanent roads as well.

<span class="mw-page-title-main">Types of concrete</span> Building material consisting of aggregates cemented by a binder

Concrete is produced in a variety of compositions, finishes and performance characteristics to meet a wide range of needs.

Resperion is a company based in Scottsdale, Arizona that is involved in the creation and development of a variety of products used in road construction, soil stabilization, dust control, and natural paving alternatives.

The wearing course is the upper layer in roadway, airfield, and dockyard construction. The term 'surface course' is sometimes used, however this term is slightly different as it can be used to describe very thin surface layers such as chip seal. In rigid pavements the upper layer is a portland cement concrete slab. In flexible pavements, the upper layer consists of asphalt concrete, that is a construction aggregate with a bituminous binder. The wearing course is typically placed on the binder course which is then laid on the base course, which is normally placed on the subbase, which rests on the subgrade. There are various different types of flexible pavement wearing course, suitable for different situations.

References