Streptomyces lydicamycinicus | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Actinomycetota |
Class: | Actinomycetia |
Order: | Streptomycetales |
Family: | Streptomycetaceae |
Genus: | Streptomyces |
Species: | S. lydicamycinicus |
Binomial name | |
Streptomyces lydicamycinicus Komaki et al. 2020 [1] | |
Type strain | |
TP-A0598 [2] |
Streptomyces lydicamycinicus is a bacterium species from the genus of Streptomyces . [1] [2] Streptomyces lydicamycinicus produces the antibiotic lydicamycin. [2] [3]
Streptomyces is the largest genus of Actinomycetota and the type genus of the family Streptomycetaceae. Over 500 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin.
Production of antibiotics is a naturally occurring event, that thanks to advances in science can now be replicated and improved upon in laboratory settings. Due to the discovery of penicillin by Alexander Flemming, and the efforts of Florey and Chain in 1938, large-scale, pharmaceutical production of antibiotics has been made possible. As with the initial discovery of penicillin, most antibiotics have been discovered as a result of happenstance. Antibiotic production can be grouped into three methods: natural fermentation, semi-synthetic, and synthetic. As more and more bacteria continue to develop resistance to currently produced antibiotics, research and development of new antibiotics continues to be important. In addition to research and development into the production of new antibiotics, repackaging delivery systems is important to improving efficacy of the antibiotics that are currently produced. Improvements to this field have seen the ability to add antibiotics directly into implanted devices, aerosolization of antibiotics for direct delivery, and combination of antibiotics with non antibiotics to improve outcomes. The increase of antibiotic resistant strains of pathogenic bacteria has led to an increased urgency for the funding of research and development of antibiotics and a desire for production of new and better acting antibiotics.
In microbiology, efflux is the moving of a variety of different compounds out of cells, such as antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals, bacterial metabolites and neurotransmitters. All microorganisms, with a few exceptions, have highly conserved DNA sequences in their genome that are transcribed and translated to efflux pumps. Efflux pumps actively move substances out of a microorganism, in a process known as active efflux, which is a vital part of xenobiotic metabolism. This active efflux mechanism is responsible for various types of resistance to bacterial pathogens within bacterial species - the most concerning being antibiotic resistance because microorganisms can have adapted efflux pumps to divert toxins out of the cytoplasm and into extracellular media.
Streptomyces griseus is a species of bacteria in the genus Streptomyces commonly found in soil. A few strains have been also reported from deep-sea sediments. It is a Gram-positive bacterium with high GC content. Along with most other streptomycetes, S. griseus strains are well known producers of antibiotics and other such commercially significant secondary metabolites. These strains are known to be producers of 32 different structural types of bioactive compounds. Streptomycin, the first antibiotic ever reported from a bacterium, comes from strains of S. griseus. Recently, the whole genome sequence of one of its strains had been completed.
Streptomyces avermitilis is a species of bacteria in the genus Streptomyces. This bacterium was discovered by Satoshi Ōmura in Shizuoka Prefecture, Japan.
Venturicidins are a group of antifungal compounds. The first member of this class was isolated from Streptomyces bacteria in 1961. Additional members of this class were subsequently isolated and characterized. An antifungal substance "aabomycin A" was isolated from Streptomyces in 1969. However, in 1990 it was reported that aabomycin A is actually a 3:1 mixture of two related components, which were then named aabomycin A1 and aabomycin A2. The structures of these were shown to be identical with those of the previously characterized compounds venturicidin A and venturicidin B, respectively. A new analog, venturicidin C, was recently reported from a Streptomyces isolated from thermal vents associated with the Ruth Mullins coal fire in Kentucky.
Naphthomycins are a group of closely related antimicrobial chemical compounds isolated from Streptomyces. They are considered a subclass of ansamycins.
Streptomyces antibioticus is a gram-positive bacterium discovered in 1941 by Nobel-prize-winner Selman Waksman and H. Boyd Woodruff. Its name is derived from the Greek "strepto-" meaning "twisted", alluding to this genus' chain-like spore production, and "antibioticus", referring to this species' extensive antibiotic production. Upon its first characterization, it was noted that S. antibioticus produces a distinct soil odor.
Streptomyces albidoflavus is a bacterium species from the genus of Streptomyces which has been isolated from soil from Poland. Streptomyces albidoflavus produces dibutyl phthalate and streptothricins.
Streptomyces albospinus is a bacterium species from the genus of Streptomyces which has been isolated from soil from the Akita City in Japan. Streptomyces albospinus produces spinamycine, phenamide, phenelfamycin G and phenelfamycin H.
Streptomyces ambofaciens is a bacterium species from the genus Streptomyces which has been isolated from soil from France. Streptomyces ambofaciens produces ambobactin, foromacidin A, foromacidin B, foromacidin C, 18-deoxospiramicin I, 17-methylenespiramycin I and congocidin.
Streptomyces griseoflavus is a bacterium species from the genus of Streptomyces which has been isolated from garden soil. Streptomyces griseoflavus produces bicozamycin, colabomycins A, colabomycins C, germacradienol and hormaomycin.
Streptomyces mutabilis is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces mutabilis produces the antibiotic mutalomycin.
Streptomyces nigrescens is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces nigrescens produces 5-alkyl-1,2,3,4-tetrahydroquinolines and the antibiotics phoslactomycin A - F.
Streptomyces niveus is a bacterium species from the genus of Streptomyces which has been isolated from soil in the United States. Streptomyces niveus produces the aminocoumarin antibiotic novobiocin and the compounds nivetetracyclate A and nivetetracyclate B.
Streptomyces olivaceus is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces olivaceus produces granaticin, elloramycin, tetroazolemycin A and tetroazolemycin B. Streptomyces olivaceus can be used to produce vitamin B12.
Streptomyces platensis is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces platensis produces oxytetracycline, platensimycin, migrastatin, isomigrastatin, platencin, dorrigocin A, dorrigocin B and terramycine.
Streptomyces rishiriensis is a bacterium species from the genus of Streptomyces which has been isolated from soil in Hokkaido in Japan. Streptomyces rishiriensis produces coumermycin A1, notomycin, 2-chloroadenosine, phosphophenylalanarginine and lactonamycin.
Streptomyces sp. myrophorea, isolate McG1 is a species of Streptomyces, that originates from a (ethnopharmacology) folk cure in the townland of Toneel North in Boho, County Fermanagh. This area was previously occupied by the Druids and before this neolithic people who engraved the nearby Reyfad stones. Streptomyces sp. myrophorea is inhibitory to many species of ESKAPE pathogens, can grow at high pH (10.5) and can tolerate relatively high levels of radioactivity.
Lydicamycin is an organic compound with the molecular formula C47H74N4O10. Lydicamycin is an antibiotic with activity against Gram-positive bacteria. The bacteria Streptomyces lydicamycinicus and Streptomyces platensis produces lydicamycin.