In mathematical writing, the term strict refers to the property of excluding equality and equivalence [1] and often occurs in the context of inequality and monotonic functions. [2] It is often attached to a technical term to indicate that the exclusive meaning of the term is to be understood. The opposite is non-strict, which is often understood to be the case but can be put explicitly for clarity. In some contexts, the word "proper" can also be used as a mathematical synonym for "strict".
This term is commonly used in the context of inequalities — the phrase "strictly less than" means "less than and not equal to" (likewise "strictly greater than" means "greater than and not equal to"). More generally, a strict partial order, strict total order, and strict weak order exclude equality and equivalence.
When comparing numbers to zero, the phrases "strictly positive" and "strictly negative" mean "positive and not equal to zero" and "negative and not equal to zero", respectively. In the context of functions, the adverb "strictly" is used to modify the terms "monotonic", "increasing", and "decreasing".
On the other hand, sometimes one wants to specify the inclusive meanings of terms. In the context of comparisons, one can use the phrases "non-negative", "non-positive", "non-increasing", and "non-decreasing" to make it clear that the inclusive sense of the terms is being used.
The use of such terms and phrases helps avoid possible ambiguity and confusion. For instance, when reading the phrase "x is positive", it is not immediately clear whether x = 0 is possible, since some authors might use the term positive loosely to mean that x is not less than zero. Such an ambiguity can be mitigated by writing "x is strictly positive" for x > 0, and "x is non-negative" for x ≥ 0. (A precise term like non-negative is never used with the word negative in the wider sense that includes zero.)
The word "proper" is often used in the same way as "strict". For example, a "proper subset" of a set S is a subset that is not equal to S itself, and a "proper class" is a class which is not also a set.
An integer is the number zero (0), a positive natural number or a negative integer with a minus sign. The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface Z or blackboard bold .
In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length.
In mathematics, a polynomial is an expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1.
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.
In measure theory, a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to the concept of measure zero, and is analogous to the notion of almost surely in probability theory.
In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a conditionally complete lattice. For comparison, in a general lattice, only pairs of elements need to have a supremum and an infimum. Every non-empty finite lattice is complete, but infinite lattices may be incomplete.
In mathematics, a monotonic function is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory.
In mathematics, the surreal number system is a totally ordered proper class containing not only the real numbers but also infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. Research on the Go endgame by John Horton Conway led to the original definition and construction of surreal numbers. Conway's construction was introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned On to Pure Mathematics and Found Total Happiness.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities:
In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced "A equals B". The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct.
In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics.
In algebra, a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary.
In mathematics and computer science, a canonical, normal, or standardform of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a unique representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness.
In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power 2, and is denoted by a superscript 2; for instance, the square of 3 may be written as 32, which is the number 9. In some cases when superscripts are not available, as for instance in programming languages or plain text files, the notations x^2 (caret) or x**2 may be used in place of x2. The adjective which corresponds to squaring is quadratic.
In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.
In mathematics, abuse of notation occurs when an author uses a mathematical notation in a way that is not entirely formally correct, but which might help simplify the exposition or suggest the correct intuition. However, since the concept of formal/syntactical correctness depends on both time and context, certain notations in mathematics that are flagged as abuse in one context could be formally correct in one or more other contexts. Time-dependent abuses of notation may occur when novel notations are introduced to a theory some time before the theory is first formalized; these may be formally corrected by solidifying and/or otherwise improving the theory. Abuse of notation should be contrasted with misuse of notation, which does not have the presentational benefits of the former and should be avoided.
In mathematics, the sign of a real number is its property of being either positive, negative, or 0.
This article incorporates material from strict on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.