Superfunction

Last updated

In mathematics, superfunction is a nonstandard name for an iterated function for complexified continuous iteration index. Roughly, for some function f and for some variable x, the superfunction could be defined by the expression

Contents

Then, S(z; x) can be interpreted as the superfunction of the function f(x). Such a definition is valid only for a positive integer index z. The variable x is often omitted. Much study and many applications of superfunctions employ various extensions of these superfunctions to complex and continuous indices; and the analysis of existence, uniqueness and their evaluation. The Ackermann functions and tetration can be interpreted in terms of superfunctions.

History

Analysis of superfunctions arose from applications of the evaluation of fractional iterations of functions. Superfunctions and their inverses allow evaluation of not only the first negative power of a function (inverse function), but also of any real and even complex iterate of that function. Historically, an early function of this kind considered was ; the function has then been used as the logo of the physics department of the Moscow State University. [1]

At that time, these investigators did not have computational access for the evaluation of such functions, but the function was luckier than : at the very least, the existence of the holomorphic function such that had been demonstrated in 1950 by Hellmuth Kneser. [2]

Relying on the elegant functional conjugacy theory of Schröder's equation, [3] for his proof, Kneser had constructed the "superfunction" of the exponential map through the corresponding Abel function, satisfying the related Abel equation

so that . The inverse function Kneser found,

is an entire super-exponential, although it is not real on the real axis; it cannot be interpreted as tetrational, because the condition cannot be realized for the entire super-exponential. The real can be constructed with the tetrational (which is also a superexponential); while the real can be constructed with the superfactorial.

There is a book dedicated to superfunctions [4]

Extensions

The recurrence formula of the above preamble can be written as

Instead of the last equation, one could write the identity function,

and extend the range of definition of the superfunction S to the non-negative integers. Then, one may posit

and extend the range of validity to the integer values larger than −2.

The following extension, for example,

is not trivial, because the inverse function may happen to be not defined for some values of . In particular, tetration can be interpreted as superfunction of exponentiation for some real base ; in this case,

Then, at x = 1,

but

is not defined.

For extension to non-integer values of the argument, the superfunction should be defined in a different way.

For complex numbers and such that belongs to some connected domain , the superfunction (from to ) of a holomorphic function f on the domain is a function , holomorphic on domain , such that

Uniqueness

In general, the superfunction is not unique. For a given base function , from a given superfunction , another superfunction could be constructed as

where is any 1-periodic function, holomorphic at least in some vicinity of the real axis, such that .

The modified superfunction may have a narrower range of holomorphy. The variety of possible superfunctions is especially large in the limiting case, when the width of the range of holomorphy becomes zero; in this case, one deals with real-analytic superfunctions. [5]

If the range of holomorphy required is large enough, then the superfunction is expected to be unique, at least in some specific base functions . In particular, the superfunction of , for , is called tetration and is believed to be unique, at least for ; for the case , [6] but up to 2009, the uniqueness was a conjecture and not a theorem with a formal mathematical proof.

Examples

This short collection of elementary superfunctions is illustrated in. [7] Some superfunctions can be expressed through elementary functions; they are used without mention that they are superfunctions. For example, for the transfer function "++", which means unit increment, the superfunction is just addition of a constant.

Addition

Chose a complex number and define the function by for all . Further define the function by for all .

Then, the function is the superfunction (0 to c) of the function on C.

Multiplication

Exponentiation is superfunction (from 1 to ) of function .

Quadratic polynomials

The examples except the last one, below, are essentially from Schröder's pioneering 1870 paper. [3]

Let . Then,

is a superfunction (iteration orbit) of f.

Indeed,

and

In this case, the superfunction is periodic, with period ; and the superfunction approaches unity in the negative direction on the real axis:

Algebraic function

Similarly,

has an iteration orbit

Rational function

In general, the transfer (step) function f(x) need not be an entire function. An example involving a meromorphic function f reads,

;

Its iteration orbit (superfunction) is

on C, the set of complex numbers except for the singularities of the function S. To see this, recall the double angle trigonometric formula

Exponentiation

Let , , . The tetration is then a superfunction of .

Abel function

The inverse of a superfunction for a suitable argument x can be interpreted as the Abel function, the solution of the Abel equation,

and hence

The inverse function when defined, is

for suitable domains and ranges, when they exist. The recursive property of S is then self-evident.

The figure at left shows an example of transition from to . The iterated function versus real argument is plotted for . The tetrational and ArcTetrational were used as superfunction and Abel function of the exponential. The figure at right shows these functions in the complex plane. At non-negative integer number of iteration, the iterated exponential is an entire function; at non-integer values, it has two branch points, which correspond to the fixed point and of natural logarithm. At , function remains holomorphic at least in the strip along the real axis.

Applications of superfunctions and Abel functions

Superfunctions, usually the superexponentials, are proposed as a fast-growing function for an upgrade of the floating point representation of numbers in computers. Such an upgrade would greatly extend the range of huge numbers which are still distinguishable from infinity.

Other applications include the calculation of fractional iterates (or fractional powers) of a function. Any holomorphic function can be identified to a transfer function, and then its superfunctions and corresponding Abel functions can be considered.

Nonlinear optics

In the investigation of the nonlinear response of optical materials, the sample is supposed to be optically thin, in such a way that the intensity of the light does not change much as it goes through. Then one can consider, for example, the absorption as function of the intensity. However, at small variation of the intensity in the sample, the precision of measurement of the absorption as function of intensity is not good. The reconstruction of the superfunction from the transfer function allows to work with relatively thick samples, improving the precision of measurements. In particular, the transfer function of the similar sample, which is half thinner, could be interpreted as the square root (i.e. half-iteration) of the transfer function of the initial sample.

Similar example is suggested for a nonlinear optical fiber. [6]

Nonlinear acoustics

It may make sense to characterize the nonlinearities in the attenuation of shock waves in a homogeneous tube. This could find an application in some advanced muffler, using nonlinear acoustic effects to withdraw the energy of the sound waves without to disturb the flux of the gas. Again, the analysis of the nonlinear response, i.e. the transfer function, may be boosted with the superfunction.

Evaporation and condensation

In analysis of condensation, the growth (or vaporization) of a small drop of liquid can be considered, as it diffuses down through a tube with some uniform concentration of vapor. In the first approximation, at fixed concentration of the vapor, the mass of the drop at the output end can be interpreted as the transfer function of the input mass. The square root of this transfer function will characterize the tube of half length.

Snow avalanche

The mass of a snowball that rolls down a hill can be considered as a function of the path it has already passed. At fixed length of this path (that can be determined by the altitude of the hill) this mass can be considered also as a transfer function of the input mass. The mass of the snowball could be measured at the top of the hill and at the bottom, giving the transfer function; then, the mass of the snowball, as a function of the length it passed, is a superfunction.

Operational element

If one needs to build up an operational element with some given transfer function , and wants to realize it as a sequential connection of a couple of identical operational elements, then each of these two elements should have transfer function . Such a function can be evaluated through the superfunction and the Abel function of the transfer function .

The operational element may have any origin: it can be realized as an electronic microchip, or a mechanical couple of curvilinear grains, or some asymmetric U-tube filled with different liquids, and so on.

Related Research Articles

<span class="mw-page-title-main">Complex number</span> Number with a real and an imaginary part

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In mechanics and geometry, the 3D rotation group, often denoted O(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Special unitary group</span> Group of unitary matrices with determinant of 1

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form

<span class="mw-page-title-main">Beta function</span> Mathematical function

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

In mathematical analysis, Fubini's theorem is a result that gives conditions under which it is possible to compute a double integral by using an iterated integral, introduced by Guido Fubini in 1907. One may switch the order of integration if the double integral yields a finite answer when the integrand is replaced by its absolute value.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi. Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later.

<span class="mw-page-title-main">Tetration</span> Arithmetic operation

In mathematics, tetration is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though and the left-exponent xb are common.

In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). The Hilbert transform is given by the Cauchy principal value of the convolution with the function (see § Definition). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° (π/2 radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see § Relationship with the Fourier transform). The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal u(t). The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions.

In mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.

Harmonic balance is a method used to calculate the steady-state response of nonlinear differential equations, and is mostly applied to nonlinear electrical circuits. It is a frequency domain method for calculating the steady state, as opposed to the various time-domain steady-state methods. The name "harmonic balance" is descriptive of the method, which starts with Kirchhoff's Current Law written in the frequency domain and a chosen number of harmonics. A sinusoidal signal applied to a nonlinear component in a system will generate harmonics of the fundamental frequency. Effectively the method assumes a linear combination of sinusoids can represent the solution, then balances current and voltage sinusoids to satisfy Kirchhoff's law. The method is commonly used to simulate circuits which include nonlinear elements, and is most applicable to systems with feedback in which limit cycles occur.

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

In mathematics, the theta representation is a particular representation of the Heisenberg group of quantum mechanics. It gains its name from the fact that the Jacobi theta function is invariant under the action of a discrete subgroup of the Heisenberg group. The representation was popularized by David Mumford.

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself.

Lightfieldmicroscopy (LFM) is a scanning-free 3-dimensional (3D) microscopic imaging method based on the theory of light field. This technique allows sub-second (~10 Hz) large volumetric imaging with ~1 μm spatial resolution in the condition of weak scattering and semi-transparence, which has never been achieved by other methods. Just as in traditional light field rendering, there are two steps for LFM imaging: light field capture and processing. In most setups, a microlens array is used to capture the light field. As for processing, it can be based on two kinds of representations of light propagation: the ray optics picture and the wave optics picture. The Stanford University Computer Graphics Laboratory published their first prototype LFM in 2006 and has been working on the cutting edge since then.

References

This article incorporates material from the Citizendium article "Superfunction", which is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License but not under the GFDL.

  1. Logo of the physics department of Moscow State University. (In Russian); . V.P.Kandidov. About the time and myself. (In Russian) . 250 anniversary of the Moscow State University. (In Russian) ПЕРВОМУ УНИВЕРСИТЕТУ СТРАНЫ - 250!
  2. H.Kneser (1950). "Reelle analytische L¨osungen der Gleichung und verwandter Funktionalgleichungen". Journal für die reine und angewandte Mathematik . 187: 56–67.
  3. 1 2 Schröder, Ernst (1870). "Ueber iterirte Functionen". Mathematische Annalen . 3 (2): 296–322. doi:10.1007/BF01443992. S2CID   116998358.
  4. Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics. Publisher: Lambert Academic Publishing.
  5. P.Walker (1991). "Infinitely differentiable generalized logarithmic and exponential functions". Mathematics of Computation . 57 (196): 723–733. doi: 10.1090/S0025-5718-1991-1094963-4 . JSTOR   2938713.
  6. 1 2 D.Kouznetsov. (2009). "Solutions of in the complex plane". Mathematics of Computation . 78: 1647–1670. doi: 10.1090/S0025-5718-09-02188-7 . preprint: PDF
  7. D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12. (Preprint ILS UEC, 2009: )