Surface growth

Last updated

In mathematics and physics, surface growth refers to models used in the dynamical study of the growth of a surface, usually by means of a stochastic differential equation of a field.

Contents

Examples

Popular growth models include: [1] [2]

They are studied for their fractal properties, scaling behavior, critical exponents, universality classes, and relations to chaos theory, dynamical system, non-equilibrium / disordered / complex systems.

Popular tools include statistical mechanics, renormalization group, rough path theory, etc.

Kinetic Monte Carlo surface growth model

Kinetic Monte Carlo (KMC) is a form of computer simulation in which atoms and molecules are allowed to interact at given rate that could be controlled based on known physics. This simulation method is typically used in the micro-electrical industry to study crystal surface growth, and it can provide accurate models surface morphology in different growth conditions on a time scales typically ranging from micro-seconds to hours. Experimental methods such as scanning electron microscopy (SEM), X-ray diffraction, and transmission electron microscopy (TEM), and other computer simulation methods such as molecular dynamics (MD), and Monte Carlo simulation (MC) are widely used.

How KMC surface growth works

1. Absorption process

First, the model tries to predict where an atom would land on a surface and its rate at particular environmental conditions, such as temperature and vapor pressure. In order to land on a surface, atoms have to overcome the so-called activation energy barrier. The frequency of passing through the activation barrier can by calculated by the Arrhenius equation:

where A is the thermal frequency of molecular vibration, is the activation energy, k is the Boltzmann constant and T is the absolute temperature.

2. Desorption process

When atoms land on a surface, there are two possibilities. First, they would diffuse on the surface and find other atoms to make a cluster, which will be discussed below. Second, they could come off of the surface or so-called desorption process. The desorption is described exactly as in the absorption process, with the exception of a different activation energy barrier.

For example, if all positions on the surface of the crystal are energy equivalent, the rate of growth can be calculated from Turnbull formula:

where is the rate of growth, ∆G = Ein – Eout, Aout, A0 out are frequencies to go in or out of crystal for any given molecule on the surface, h is the height of the molecule in the growth direction and C0 the concentration of the molecules in direct distance from the surface.

3. Diffusion process on surface

Diffusion process can also be calculated with Arrhenius equation:

where D is the diffusion coefficient and Ed is diffusion activation energy.

All three processes strongly depend on surface morphology at a certain time. For example, atoms tend to lend at the edges of a group of connected atoms, the so-called island, rather than on a flat surface, this reduces the total energy. When atoms diffuse and connect to an island, each atom tends to diffuse no further, because activation energy to detach itself out of the island is much higher. Moreover, if an atom landed on top of an island, it would not diffuse fast enough, and the atom would tend to move down the steps and enlarge it.

Simulation methods

Because of limited computing power, specialized simulation models have been developed for various purposes depending on the time scale:

a) Electronic scale simulations (density function theory, ab-initio molecular dynamics): sub-atomic length scale in femto-second time scale

b) Atomic scale simulations (MD): nano to micro-meter length scale in nano-second time scale

c) Film scale simulation (KMC): micro-meter length scale in micro to hour time scale.

d) Reactor scale simulation (phase field model): meter length scale in year time scale.

Multiscale modeling techniques have also been developed to deal with overlapping time scales.

How to use growth conditions in KMC

The interest of growing a smooth and defect-free surface requires a combination set of physical conditions throughout the process. Such conditions are bond strength, temperature, surface-diffusion limited and supersaturation (or impingement) rate. Using KMC surface growth method, following pictures describe final surface structure at different conditions.

1. Bond strength and temperature

Bond strength and temperature certainly play important roles in the crystal grow process. For high bond strength, when atoms land on a surface, they tend to be closed to atomic surface clusters, which reduce total energy. This behavior results in many isolated cluster formations with a variety of size yielding a rough surface. Temperature, on the other hand, controls the high of the energy barrier.

Conclusion: high bond strength and low temperature is preferred to grow a smoothed surface.

2. Surface and bulk diffusion effect

Thermodynamically, a smooth surface is the lowest ever configuration, which has the smallest surface area. However, it requires a kinetic process such as surface and bulk diffusion to create a perfectly flat surface.

Conclusion: enhancing surface and bulk diffusion will help create a smoother surface.

3. Supersaturation level

Conclusion: low impingement rate helps creating smoother surface.

4. Morphology at different combination of conditions

With the control of all growth conditions such as temperature, bond strength, diffusion, and saturation level, desired morphology could be formed by choosing the right parameters. Following is the demonstration how to obtain some interesting surface features:

See also

Related Research Articles

<span class="mw-page-title-main">Molecular diffusion</span> Thermal motion of liquid or gas particles at temperatures above absolute zero

Molecular diffusion, often simply called diffusion, is the thermal motion of all particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles. Diffusion explains the net flux of molecules from a region of higher concentration to one of lower concentration. Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of self-diffusion, originating from the random motion of the molecules. The result of diffusion is a gradual mixing of material such that the distribution of molecules is uniform. Since the molecules are still in motion, but an equilibrium has been established, the result of molecular diffusion is called a "dynamic equilibrium". In a phase with uniform temperature, absent external net forces acting on the particles, the diffusion process will eventually result in complete mixing.

<span class="mw-page-title-main">Fick's laws of diffusion</span> Mathematical descriptions of molecular diffusion

Fick's laws of diffusion describe diffusion and were first posited by Adolf Fick in 1855 on the basis of largely experimental results. They can be used to solve for the diffusion coefficient, D. Fick's first law can be used to derive his second law which in turn is identical to the diffusion equation.

<span class="mw-page-title-main">Sintering</span> Process of forming and bonding material by heat or pressure

Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plastics, and other materials. The nanoparticles in the sintered material diffuse across the boundaries of the particles, fusing the particles together and creating a solid piece.

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

<span class="mw-page-title-main">Adsorption</span> Phenomenon of surface adhesion

Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the adsorbate on the surface of the adsorbent. This process differs from absorption, in which a fluid is dissolved by or permeates a liquid or solid. While adsorption does often precede absorption, which involves the transfer of the absorbate into the volume of the absorbent material, alternatively, adsorption is distinctly a surface phenomenon, wherein the adsorbate does not penetrate through the material surface and into the bulk of the adsorbent. The term sorption encompasses both adsorption and absorption, and desorption is the reverse of sorption.

<span class="mw-page-title-main">Creep (deformation)</span> Tendency of a solid material to move slowly or deform permanently under mechanical stress

In materials science, creep is the tendency of a solid material to undergo slow deformation while subject to persistent mechanical stresses. It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods and generally increase as they near their melting point.

<span class="mw-page-title-main">Collision theory</span> Chemistry principle

Collision theory is a principle of chemistry used to predict the rates of chemical reactions. It states that when suitable particles of the reactant hit each other with the correct orientation, only a certain amount of collisions result in a perceptible or notable change; these successful changes are called successful collisions. The successful collisions must have enough energy, also known as activation energy, at the moment of impact to break the pre-existing bonds and form all new bonds. This results in the products of the reaction. The activation energy is often predicted using the Transition state theory. Increasing the concentration of the reactant brings about more collisions and hence more successful collisions. Increasing the temperature increases the average kinetic energy of the molecules in a solution, increasing the number of collisions that have enough energy. Collision theory was proposed independently by Max Trautz in 1916 and William Lewis in 1918.

Desorption is the physical process where adsorbed atoms or molecules are released from a surface into the surrounding vacuum or fluid. This occurs when a molecule gains enough energy to overcome the activation barrier and the binding energy that keep it attached to the surface.

<span class="mw-page-title-main">Adatom</span> Portmanteau word for an atom adsorbed onto the surface of a solid material

An adatom is an atom that lies on a crystal surface, and can be thought of as the opposite of a surface vacancy. This term is used in surface chemistry and epitaxy, when describing single atoms lying on surfaces and surface roughness. The word is a portmanteau of "adsorbed atom". A single atom, a cluster of atoms, or a molecule or cluster of molecules may all be referred to by the general term "adparticle". This is often a thermodynamically unfavorable state. However, cases such as graphene may provide counter-examples.

<span class="mw-page-title-main">Dendrite (metal)</span>

A dendrite in metallurgy is a characteristic tree-like structure of crystals growing as molten metal solidifies, the shape produced by faster growth along energetically favourable crystallographic directions. This dendritic growth has large consequences in regard to material properties.

<span class="mw-page-title-main">Ostwald ripening</span> Process by which small crystals dissolve in solution for the benefit of larger crystals

Ostwald ripening is a phenomenon observed in solid solutions and liquid sols that involves the change of an inhomogeneous structure over time, in that small crystals or sol particles first dissolve and then redeposit onto larger crystals or sol particles.

The kinetic Monte Carlo (KMC) method is a Monte Carlo method computer simulation intended to simulate the time evolution of some processes occurring in nature. Typically these are processes that occur with known transition rates among states. It is important to understand that these rates are inputs to the KMC algorithm, the method itself cannot predict them.

The Deal–Grove model mathematically describes the growth of an oxide layer on the surface of a material. In particular, it is used to predict and interpret thermal oxidation of silicon in semiconductor device fabrication. The model was first published in 1965 by Bruce Deal and Andrew Grove of Fairchild Semiconductor, building on Mohamed M. Atalla's work on silicon surface passivation by thermal oxidation at Bell Labs in the late 1950s. This served as a step in the development of CMOS devices and the fabrication of integrated circuits.

Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurately, the diffusion coefficient times the local concentration is the proportionality constant between the negative value of the mole fraction gradient and the molar flux. This distinction is especially significant in gaseous systems with strong temperature gradients. Diffusivity derives its definition from Fick's law and plays a role in numerous other equations of physical chemistry.

<span class="mw-page-title-main">Surface diffusion</span> Process involving the motion of atoms and molecules adsorbed at the surface of solid materials

Surface diffusion is a general process involving the motion of adatoms, molecules, and atomic clusters (adparticles) at solid material surfaces. The process can generally be thought of in terms of particles jumping between adjacent adsorption sites on a surface, as in figure 1. Just as in bulk diffusion, this motion is typically a thermally promoted process with rates increasing with increasing temperature. Many systems display diffusion behavior that deviates from the conventional model of nearest-neighbor jumps. Tunneling diffusion is a particularly interesting example of an unconventional mechanism wherein hydrogen has been shown to diffuse on clean metal surfaces via the quantum tunneling effect.

In materials science, segregation is the enrichment of atoms, ions, or molecules at a microscopic region in a materials system. While the terms segregation and adsorption are essentially synonymous, in practice, segregation is often used to describe the partitioning of molecular constituents to defects from solid solutions, whereas adsorption is generally used to describe such partitioning from liquids and gases to surfaces. The molecular-level segregation discussed in this article is distinct from other types of materials phenomena that are often called segregation, such as particle segregation in granular materials, and phase separation or precipitation, wherein molecules are segregated in to macroscopic regions of different compositions. Segregation has many practical consequences, ranging from the formation of soap bubbles, to microstructural engineering in materials science, to the stabilization of colloidal suspensions.

<span class="mw-page-title-main">Diffusion</span> Transport of dissolved species from the highest to the lowest concentration region

Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing.

Dislocation creep is a deformation mechanism in crystalline materials. Dislocation creep involves the movement of dislocations through the crystal lattice of the material, in contrast to diffusion creep, in which diffusion is the dominant creep mechanism. It causes plastic deformation of the individual crystals, and thus the material itself.

<span class="mw-page-title-main">Lattice diffusion coefficient</span> Atomic diffusion within a crystalline lattice

In condensed matter physics, lattice diffusion refers to atomic diffusion within a crystalline lattice, which occurs by either interstitial or substitutional mechanisms. In interstitial lattice diffusion, a diffusant, will diffuse in between the lattice structure of another crystalline element. In substitutional lattice diffusion, the atom can only move by switching places with another atom. Substitutional lattice diffusion is often contingent upon the availability of point vacancies throughout the crystal lattice. Diffusing particles migrate from point vacancy to point vacancy by the rapid, essentially random jumping about. Since the prevalence of point vacancies increases in accordance with the Arrhenius equation, the rate of crystal solid state diffusion increases with temperature. For a single atom in a defect-free crystal, the movement can be described by the "random walk" model.

Nabarro–Herring creep is a mode of deformation of crystalline materials that occurs at low stresses and held at elevated temperatures in fine-grained materials. In Nabarro–Herring creep, atoms diffuse through the crystals, and the creep rate varies inversely with the square of the grain size so fine-grained materials creep faster than coarser-grained ones. NH creep is solely controlled by diffusional mass transport. This type of creep results from the diffusion of vacancies from regions of high chemical potential at grain boundaries subjected to normal tensile stresses to regions of lower chemical potential where the average tensile stresses across the grain boundaries are zero. Self-diffusion within the grains of a polycrystalline solid can cause the solid to yield to an applied shearing stress, the yielding being caused by a diffusional flow of matter within each crystal grain away from boundaries where there is a normal pressure and toward those where there is a normal tension. Atoms migrating in the opposite direction account for the creep strain. The creep strain rate is derived in the next section. NH creep is more important in ceramics than metals as dislocation motion is more difficult to effect in ceramics.

References

  1. Kardar. (2007). Statistical Physics of Fields. Cambridge University Press. OCLC   939869413.
  2. Zee, Anthony (2010). Quantum Field Theory. Princeton University Press. ISBN   9781400835324.
  3. Wolchover, Natalie. "Machine Learning's 'Amazing' Ability to Predict Chaos". Quanta Magazine. Retrieved 2019-05-06.

Kinetic Monte Carlo