Surufatinib

Last updated
Surufatinib
Surufatinib.svg
Clinical data
Trade names Sulanda
Other namesSulfatinib; HMPL-012
Legal status
Legal status
  • In general: ℞ (Prescription only)
Identifiers
  • N-[2-(Dimethylamino)ethyl]-1-[3-[[4-[(2-methyl-1H-indol-5-yl)oxy]pyrimidin-2-yl]amino]phenyl]methanesulfonamide
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
ChEMBL
Chemical and physical data
Formula C24H28N6O3S
Molar mass 480.59 g·mol−1
3D model (JSmol)
  • CC1=CC2=C(N1)C=CC(=C2)OC3=NC(=NC=C3)NC4=CC=CC(=C4)CS(=O)(=O)NCCN(C)C
  • InChI=1S/C24H28N6O3S/c1-17-13-19-15-21(7-8-22(19)27-17)33-23-9-10-25-24(29-23)28-20-6-4-5-18(14-20)16-34(31,32)26-11-12-30(2)3/h4-10,13-15,26-27H,11-12,16H2,1-3H3,(H,25,28,29)
  • Key:TTZSNFLLYPYKIL-UHFFFAOYSA-N

Surufatinib (trade name Sulanda) is pharmaceutical drug for the treatment of cancer. In China, it is approved for late-stage, well-differentiated, extrapancreatic neuroendocrine tumors. [1]

It is also under investigation for the treatment of other types of solid tumors. [2] [3]

Surufatinib targets fibroblast growth factor receptor 1 (FGFR1). [4]

Related Research Articles

Immunotherapy or biological therapy is the treatment of disease by activating or suppressing the immune system. Immunotherapies designed to elicit or amplify an immune response are classified as activation immunotherapies, while immunotherapies that reduce or suppress are classified as suppression immunotherapies. Immunotherapy is under preliminary research for its potential to treat various forms of cancer.

<span class="mw-page-title-main">Targeted therapy</span> Type of therapy

Targeted therapy or molecularly targeted therapy is one of the major modalities of medical treatment (pharmacotherapy) for cancer, others being hormonal therapy and cytotoxic chemotherapy. As a form of molecular medicine, targeted therapy blocks the growth of cancer cells by interfering with specific targeted molecules needed for carcinogenesis and tumor growth, rather than by simply interfering with all rapidly dividing cells. Because most agents for targeted therapy are biopharmaceuticals, the term biologic therapy is sometimes synonymous with targeted therapy when used in the context of cancer therapy. However, the modalities can be combined; antibody-drug conjugates combine biologic and cytotoxic mechanisms into one targeted therapy.

<span class="mw-page-title-main">Lapatinib</span> Cancer medication

Lapatinib (INN), used in the form of lapatinib ditosylate (USAN) is an orally active drug for breast cancer and other solid tumours. It is a dual tyrosine kinase inhibitor which interrupts the HER2/neu and epidermal growth factor receptor (EGFR) pathways. It is used in combination therapy for HER2-positive breast cancer. It is used for the treatment of patients with advanced or metastatic breast cancer whose tumors overexpress HER2 (ErbB2).

The fibroblast growth factor receptors (FGFR) are, as their name implies, receptors that bind to members of the fibroblast growth factor (FGF) family of proteins. Some of these receptors are involved in pathological conditions. For example, a point mutation in FGFR3 can lead to achondroplasia.

<span class="mw-page-title-main">KRAS</span> Protein-coding gene in humans

KRAS is a gene that provides instructions for making a protein called K-Ras, a part of the RAS/MAPK pathway. The protein relays signals from outside the cell to the cell's nucleus. These signals instruct the cell to grow and divide (proliferate) or to mature and take on specialized functions (differentiate). It is called KRAS because it was first identified as a viral oncogene in the KirstenRAt Sarcoma virus. The oncogene identified was derived from a cellular genome, so KRAS, when found in a cellular genome, is called a proto-oncogene.

<span class="mw-page-title-main">Fibroblast growth factor receptor 1</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 1 (FGFR1), also known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2 / Pfeiffer syndrome, and CD331, is a receptor tyrosine kinase whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome, and clonal eosinophilias.

<span class="mw-page-title-main">Carmofur</span> Chemical compound

Carmofur (INN) or HCFU (1-hexylcarbamoyl-5-fluorouracil) is a pyrimidine analogue used as an antineoplastic agent. It is a derivative of fluorouracil, being a lipophilic-masked analog of 5-FU that can be administered orally.

<span class="mw-page-title-main">Entinostat</span> Chemical compound

Entinostat, also known as SNDX-275 and MS-275, is a benzamide histone deacetylase inhibitor undergoing clinical trials for treatment of various cancers.

<span class="mw-page-title-main">Tyrosine kinase inhibitor</span> Drug typically used in cancer treatment

A tyrosine kinase inhibitor (TKI) is a pharmaceutical drug that inhibits tyrosine kinases. Tyrosine kinases are enzymes responsible for the activation of many proteins by signal transduction cascades. The proteins are activated by adding a phosphate group to the protein (phosphorylation), a step that TKIs inhibit. TKIs are typically used as anticancer drugs. For example, they have substantially improved outcomes in chronic myelogenous leukemia. They have also been used to treat other diseases, such as idiopathic pulmonary fibrosis.

<span class="mw-page-title-main">Volasertib</span> Chemical compound

Volasertib is an experimental small molecule inhibitor of the PLK1 protein being developed by Boehringer Ingelheim for use as an anti-cancer agent. Volasertib is the second in a novel class of drugs called dihydropteridinone derivatives.

Angiokinase inhibitors are a new therapeutic target for the management of cancer. They inhibit tumour angiogenesis, one of the key processes leading to invasion and metastasis of solid tumours, by targeting receptor tyrosine kinases. Examples include nintedanib, afatinib and motesanib.

mTOR inhibitors Class of pharmaceutical drugs

mTOR inhibitors are a class of drugs used to treat several human diseases, including cancer, autoimmune diseases, and neurodegeneration. They function by inhibiting the mammalian target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases (PIKKs). mTOR regulates cellular metabolism, growth, and proliferation by forming and signaling through two protein complexes, mTORC1 and mTORC2. The most established mTOR inhibitors are so-called rapalogs, which have shown tumor responses in clinical trials against various tumor types.

<span class="mw-page-title-main">Tumor microenvironment</span> Surroundings of tumors including nearby cells and blood vessels

The tumor microenvironment is a complex ecosystem surrounding a tumor, composed of cancer cells, stromal tissue and the extracellular matrix. Mutual interaction between cancer cells and the different components of the tumor microenvironment support its growth and invasion in healthy tissues which correlates with tumor resistance to current treatments and poor prognosis. The tumor microenvironment is in constant change because of the tumor's ability to influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells.

<span class="mw-page-title-main">Navitoclax</span> Chemical compound

Navitoclax is an experimental orally active anti-cancer drug, which is a Bcl-2 inhibitor similar in action to obatoclax.

BET inhibitors are a class of drugs that reversibly bind the bromodomains of Bromodomain and Extra-Terminal motif (BET) proteins BRD2, BRD3, BRD4, and BRDT, and prevent protein-protein interaction between BET proteins and acetylated histones and transcription factors.

<span class="mw-page-title-main">IL17RD</span>

Interleukin 17 receptor D is a protein that in humans is encoded by the IL17RD gene.

<span class="mw-page-title-main">Tislelizumab</span> Monoclonal antibody

Tislelizumab, sold under the brand name Tevimbra among others, is a humanized monoclonal antibody directed against programmed death receptor-1. It is being developed by BeiGene.

<span class="mw-page-title-main">ONX-0801</span> Chemical compound

ONX-0801 is an experimental drug that has been developed to target ovarian cancer. It is a folate receptor alpha mediated thymidylate synthase inhibitor.

<span class="mw-page-title-main">HL156A</span> Chemical compound

HL156A is a derivative of metformin and a potent oxidative phosphorylation inhibitor and AMP-activated protein kinase activating biguanide. Certain types of cancer cells requires oxidative phosphorylation to survive. By targeting it, HL156A might help in improving anticancer therapy. It is more potent than acadesine or metformin at activating AMP-activated protein kinase. It is synthesized by Hanall Biopharma.

<span class="mw-page-title-main">Resigratinib</span> Chemical compound

Resigratinib (KIN-3248) is an experimental anticancer medication which acts as a fibroblast growth factor receptor inhibitor (FGFRi) and is in early stage human clinical trials.

References

  1. Syed YY (April 2021). "Surufatinib: First Approval". Drugs. 81 (6): 727–732. doi:10.1007/s40265-021-01489-y. PMID   33788183.
  2. Liao S, Li J, Gao S, Han Y, Han X, Wu Y, et al. (2023). "Sulfatinib, a novel multi-targeted tyrosine kinase inhibitor of FGFR1, CSF1R, and VEGFR1-3, suppresses osteosarcoma proliferation and invasion via dual role in tumor cells and tumor microenvironment". Frontiers in Oncology. 13: 1158857. doi: 10.3389/fonc.2023.1158857 . PMC   10286821 . PMID   37361567.
  3. Xu JM, Wang Y, Chen YL, Jia R, Shen L, Wang J, et al. (2014). "First-in-human (FIH) phase I study of a selective VEGFR/FGFR dual inhibitor sulfatinib with milled formulation in patients with advanced solid tumors". Journal of Clinical Oncology. 32 (15_suppl): 2615. doi:10.1200/jco.2014.32.15_suppl.2615.
  4. Lin Q, Dai S, Qu L, Lin H, Guo M, Wei H, et al. (January 2024). "Structural basis and selectivity of sulfatinib binding to FGFR and CSF-1R". Communications Chemistry. 7 (1): 3. doi:10.1038/s42004-023-01084-0. PMC   10764862 . PMID   38172256.