Susan Band Horwitz

Last updated
Susan Band Horwitz
Born1937
Cambridge, Massachusetts
NationalityAmerican
Alma materBryn Mawr College,
Brandeis University
Known forAnti-tumor drugs
Scientific career
FieldsBiochemistry
InstitutionsTufts University Medical School,
Emory University Medical School,
Albert Einstein College of Medicine
Doctoral advisor Nathan O. Kaplan

Susan Band Horwitz is an American biochemist and professor at the Albert Einstein College of Medicine [1] [2] where she holds the Falkenstein chair in Cancer Research as well as co-chair of the department of Molecular Pharmacology.

Contents

Horwitz is a pioneer in dissecting the mechanisms of action of chemotherapeutic drugs including camptothecin, epipodophyllotoxins, and bleomycin, and taxol. Horwitz's work on taxol in particular has brought her international recognition. Horwitz discovered that taxol binds to microtubules, resulting in arrest of the cell cycle in metaphase. [1] Her work paved the way to using taxol and other microtubule binding agents as chemotherapeutics. Taxol remains widely used today, as a means to treat ovarian, breast, and lung cancer. [3] However, since taxol is in short supply, Horwitz is directing studies in her lab to identify similar therapies in natural products.

Personal life and education

Susan Band Horwitz was born in Cambridge, Massachusetts in 1937. [3] She spent her childhood in the Boston area and attended a Boston public high school. [1] She went to Bryn Mawr College for her undergraduate studies and graduated with a degree in biology in 1958. [3] Subsequently, Susan moved on to obtain her PhD in biochemistry at Brandeis University. It was here that she studied the activity of enzymes and enzyme kinetics under Nathan O. Kaplan. More specifically, she focused on hexitol dehydrogenases from several bacteria, including Bacillus subtilis and Aerobacta aerogenes . [3] Following the completion of her PhD program, her next venture was in the Pharmacology department as a postdoctoral fellow at Tufts University Medical School under Roy Kisliuk. Here, she looked at bacterial assays to explore anti folate qualities present in novel compounds. [3] She began teaching pharmacology to the dental students at Tufts. In 1965, Susan and her family moved down to Georgia where she accepted a position in the pharmacology department at Emory University Medical School. In 1967, she migrated back north again, this time to New York where she took a job as a research assistant under Arthur Grollman at the Albert Einstein College of Medicine. [3] She has worked for the Albert Einstein College of Medicine ever since. In 1970, she moved to a full-time job as an assistant professor in the department of pharmacology. From 2002 to 2003, [1] [2] she was the president of the American Association for Cancer Research. She has a membership in several different organizations including, The National Academy of Sciences, the Institute of Medicine of the National Academies, the American Academy of Arts and Sciences and the American Philosophical Society. [1] [2] Throughout the course of Susan's career, she has been published over 250 times. [4]

Taxol mechanism discovery

Horwitz had been working on several anti tumor drugs in her lab that inhibited the cell cycle by binding to DNA. The National Cancer Institute (NCI) contacted her one day in 1977, and inquired whether she would be interested in working on a drug for them, called Taxol. This was a drug that had been obtained from the yew plant Taxus brevifolia . At the time there was only one published article about the drug from 1971. Horwitz happily complied to the offer and received 10 milligrams of the drug from the NCI. She planned to examine the drug with her graduate student, Peter Schiff, for a month. After the month was up, they planned to decide whether or not the project displayed enough promise to continue. By the end of the month, they were heavily invested in the drug due to its outstanding uniqueness. They had discovered that the molecule acted by interacting with microtubules. They performed assays with the molecule to determine what cell cycle phase was arrested by its mechanism of action. The stoppage of the cycle turned out to clearly occur during mitosis. With this realization, they quickly discovered that there was a binding site for the molecule located on the tubulin, which led them to their next discovery that the microtubules were frozen in place when the molecule was bound in this site. The cytoskeleton was essentially stuck in place, which served to inhibit any depolymerization. Their next step in the process was to identify where the binding site was and how the molecule managed to bind effectively. At this point, Horwitz enlisted another colleague, George Orr, to aid in the work. They used photo-affinity analogues to identify putative regions of interaction between the molecule and tubulin. Obtaining these analogues was an arduous task for the team; however, after some time, suitable analogues were synthesized and successfully used in their studies to identify regions of interaction between Taxol and ß-tubulin. Electron crystallography studies from other scientists including Eva Nogales and Ken Downing at the Lawrence Berkeley lab in California, confirmed their initial findings, and following a period of extensive investigation, the binding site for Taxol on ß-tubulin was officially delineated. This revolutionary discovery initiated the search for similar molecules. Even though Taxol® is now a very widely accepted treatment for cancer patients, it is a very hydrophobic molecule and cannot be dissolved in saline for administration to patients. Instead, it must be given to patients in a different solubilizing substance, called cremophor. This is not an ideal substance for bodily injection and because of this, new therapies involving the combination of Taxol with various parts of other molecules are becoming a bigger frontier for research. [1]

Further research

With the search for similar microtubulin binding molecules, scientists explored many natural products in the ocean, specifically sponges. It took around 15 years until another molecule with a similar mechanism was found. In more recent years, the molecules that have been discovered have differing structures from Taxol, however the mechanisms still remain to be similar. One in particular is called, discodermolide. Dr. Horwitz and her team were interested in not only the binding site for the molecule on the microtubule, but also the possible allosteric effects that the molecule may have on other parts of the microtubule. In order to test for these effects, the team used a hydrogen-deuterium exchange process. The results showed that there was in fact several changes that occurred along the microtubule separate from the binding site when the molecule was bound. They found that normal microtubule-associated proteins, or MAPs, were not able to bind to the microtubules in the normal way. When discodermolide and Taxol® were both tested together, the results displayed that they do bind in the same location on the microtubules, however they bind in unique ways from each other. This opened a new door for the team as they decided to attempt making hybrid molecules that would put together the active parts of both of these molecules into one super molecule. [1] [3]

Awards and honors

Horwitz has received many awards for her work over the years. These awards and honors include:

Related Research Articles

<span class="mw-page-title-main">Paclitaxel</span> Medication used for cancer

Paclitaxel, sold under the brand name Taxol among others, is a chemotherapy medication used to treat ovarian cancer, esophageal cancer, breast cancer, lung cancer, Kaposi's sarcoma, cervical cancer, and pancreatic cancer. It is administered by intravenous injection. There is also an albumin-bound formulation.

<span class="mw-page-title-main">Tubulin</span> Superfamily of proteins that make up microtubules

Tubulin in molecular biology can refer either to the tubulin protein superfamily of globular proteins, or one of the member proteins of that superfamily. α- and β-tubulins polymerize into microtubules, a major component of the eukaryotic cytoskeleton. It was discovered and named by Hideo Mōri in 1968. Microtubules function in many essential cellular processes, including mitosis. Tubulin-binding drugs kill cancerous cells by inhibiting microtubule dynamics, which are required for DNA segregation and therefore cell division.

In cell biology, microtubule-associated proteins (MAPs) are proteins that interact with the microtubules of the cellular cytoskeleton. MAPs are integral to the stability of the cell and its internal structures and the transport of components within the cell.

<span class="mw-page-title-main">Docetaxel</span> Chemotherapy medication

Docetaxel, sold under the brand name Taxotere among others, is a chemotherapy medication used to treat a number of types of cancer. This includes breast cancer, head and neck cancer, stomach cancer, prostate cancer and non-small-cell lung cancer. It may be used by itself or along with other chemotherapy medication. It is given by slow injection into a vein.

<span class="mw-page-title-main">Vinblastine</span> Chemotherapy medication

Vinblastine (VBL), sold under the brand name Velban among others, is a chemotherapy medication, typically used with other medications, to treat a number of types of cancer. This includes Hodgkin's lymphoma, non-small-cell lung cancer, bladder cancer, brain cancer, melanoma, and testicular cancer. It is given by injection into a vein.

A spindle poison, also known as a spindle toxin, is a poison that disrupts cell division by affecting the protein threads that connect the centromere regions of chromosomes, known as spindles. Spindle poisons effectively cease the production of new cells by interrupting the mitosis phase of cell division at the spindle assembly checkpoint (SAC). However, as numerous and varied as they are, spindle poisons are not yet 100% effective at ending the formation of tumors (neoplasms). Although not 100% effective, substantive therapeutic efficacy has been found in these types of chemotherapeutic treatments. The mitotic spindle is composed of microtubules that aid, along with regulatory proteins, each other in the activity of appropriately segregating replicated chromosomes. Certain compounds affecting the mitotic spindle have proven highly effective against solid tumors and hematological malignancies.

<span class="mw-page-title-main">Discodermolide</span> Chemical compound

(+)-Discodermolide is a polyketide natural product found to stabilize microtubules. (+)-discodermolide was isolated by Gunasekera and his co-workers at the Harbor Branch Oceanographic Institute from the deep-sea sponge Discodermia dissoluta in 1990. (+)-Discodermolide was found to be a potent inhibitor of tumor cell growth in several MDR cancer cell lines. (+)-discodermolide also shows some unique characters, including a linear backbone structure, immunosuppressive properties both in vitro and in vivo, potent induction of an accelerated senescence phenotype, and synergistic antiproliferative activity in combination with paclitaxel. Discodermolide was recognized as one of the most potent natural promoters of tubulin assembly. A large number of efforts toward the total synthesis of (+)-discodermolide were directed by its interesting biological activities and extreme scarcity of natural sources. The compound supply necessary for complete clinical trials cannot be met by harvesting, isolation, and purification. As of 2005, attempts at synthesis or semi-synthesis by fermentation have proven unsuccessful. As a result, all discodermolide used in preclinical studies and clinical trials has come from large-scale total synthesis.

<i>Vinca</i> alkaloid

Vinca alkaloids are a set of anti-mitotic and anti-microtubule alkaloid agents originally derived from the periwinkle plant Catharanthus roseus and other vinca plants. They block beta-tubulin polymerization in a dividing cell.

<span class="mw-page-title-main">Epothilone</span> Class of chemical compounds

Epothilones are a class of potential cancer drugs. Like taxanes, they prevent cancer cells from dividing by interfering with tubulin, but in early trials, epothilones have better efficacy and milder adverse effects than taxanes.

<span class="mw-page-title-main">Eva Nogales</span> Biophysicist, professor

Eva Nogales is a Spanish-American biophysicist at the Lawrence Berkeley National Laboratory and a professor at the University of California, Berkeley, where she served as head of the Division of Biochemistry, Biophysics and Structural Biology of the Department of Molecular and Cell Biology (2015–2020). She is a Howard Hughes Medical Institute investigator.

<span class="mw-page-title-main">Mitotic inhibitor</span> Cell division inhibitor

A mitotic inhibitor, microtubule inhibitor, or tubulin inhibitor, is a drug that inhibits mitosis, or cell division, and is used in treating cancer, gout, and nail fungus. These drugs disrupt microtubules, which are structures that pull the chromosomes apart when a cell divides. Mitotic inhibitors are used in cancer treatment, because cancer cells are able to grow through continuous division that eventually spread through the body (metastasize). Thus, cancer cells are more sensitive to inhibition of mitosis than normal cells. Mitotic inhibitors are also used in cytogenetics, where they stop cell division at a stage where chromosomes can be easily examined.

<span class="mw-page-title-main">Tubulin beta-3 chain</span> Microtubule element of the tubulin family

Tubulin beta-3 chain, Class III β-tubulin, βIII-tubulin (β3-tubulin) or β-tubulin III, is a microtubule element of the tubulin family found almost exclusively in neurons, and in testis cells. In humans, it is encoded by the TUBB3 gene.

<span class="mw-page-title-main">Eribulin</span> Pharmaceutical drug

Eribulin, sold under the brand name Halaven among others, is an anti-cancer medication used to treat breast cancer and liposarcoma.

<span class="mw-page-title-main">Taccalonolide</span> Class of chemical compounds

Taccalonolides are a class of microtubule-stabilizing agents isolated from Tacca chantrieri that has been shown to have selective cancer-fighting properties. Other examples of microtubule-stabilizing agents include taxanes and epothilones, both of which prevent cancer cells from dividing by interfering with tubulin. While taxanes like Paclitaxel and docetaxel have been used successfully against breast, ovarian, prostate, and non–small-cell lung cancers, intrinsic and acquired drug resistance limit their anticancer properties. Unlike taxanes, taccalonolides appear to work through a different mechanism of action that does not involve tubulin, although recently isolated taccalonolides AF and AJ have shown tubulin-interaction activity. The discovery of taccalonolides opens up new possibilities to treat cancer cells, especially ones that are taxane- or epithilone-resistant.

<span class="mw-page-title-main">Cytoskeletal drugs</span> Substances or medications that interact with actin or tubulin

Cytoskeletal drugs are small molecules that interact with actin or tubulin. These drugs can act on the cytoskeletal components within a cell in three main ways. Some cytoskeletal drugs stabilize a component of the cytoskeleton, such as taxol, which stabilizes microtubules, or Phalloidin, which stabilizes actin filaments. Others, such as Cytochalasin D, bind to actin monomers and prevent them from polymerizing into filaments. Drugs such as demecolcine act by enhancing the depolymerisation of already formed microtubules. Some of these drugs have multiple effects on the cytoskeleton: for example, Latrunculin both prevents actin polymerization as well as enhancing its rate of depolymerization. Typically the microtubule targeting drugs can be found in the clinic where they are used therapeutically in the treatment of some forms of cancer. As a result of the lack of specificity for specific type of actin, the use of these drugs in animals results in unacceptable off-target effects. Despite this, the actin targeting compounds are still useful tools that can be used on a cellular level to help further our understanding of how this complex part of the cells' internal machinery operates. For example, Phalloidin that has been conjugated with a fluorescent probe can be used for visualizing the filamentous actin in fixed samples.

<span class="mw-page-title-main">Lucy Shapiro</span> American developmental biologist

Lucy Shapiro is an American developmental biologist. She is a professor of Developmental Biology at the Stanford University School of Medicine. She is the Virginia and D.K. Ludwig Professor of Cancer Research and the director of the Beckman Center for Molecular and Genetic Medicine.

Bhabatarak Bhattacharyya, popularly known as Bablu Bhattacharyya, is an Indian structural biologist, biochemist and academic, known for his studies on the colchicine-tubulin interaction. He is a former professor and the head of the department of biochemistry at the Bose Institute, Kolkata and an elected fellow of the Indian Academy of Sciences, Indian National Science Academy, National Academy of Sciences, India and The World Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 1988, for his contributions to biological sciences.

Maria Kavallaris is an Australian scientist, based at the University of New South Wales' Children's Cancer Institute, where she is best known for her contributions to the field of cancer research. On 25 January 2019, Kavallaris was appointed a member of the Order of Australia.

Induced cell cycle arrest is the use of a chemical or genetic manipulation to artificially halt progression through the cell cycle. Cellular processes like genome duplication and cell division stop. It can be temporary or permanent. It is an artificial activation of naturally occurring cell cycle checkpoints, induced by exogenous stimuli controlled by an experimenter.

<span class="mw-page-title-main">Sabizabulin</span> Chemical compound

Sabizabulin is a chemical compound from the group of indole and imidazole derivatives that was first reported in 2012 by Dalton, Li, and Miller. It is being studied as a mitotic inhibitor and chemotherapeutic agent in castration-resistant metastatic prostate cancer and in SARS-CoV-2 (COVID-19) infections.

References

  1. 1 2 3 4 5 6 7 Horwitz, Susan; Goldman, David (January 2015). "A Conversation with Susan Band Horwitz". Annual Review of Pharmacology and Toxicology. 55: 1–9. doi: 10.1146/annurev-pharmtox-010814-124519 . PMID   25562642.
  2. 1 2 3 4 5 6 7 8 "Susan Band Horwitz". www.warrenalpert.org.
  3. 1 2 3 4 5 6 7 Davis, Tinsley (June 26, 2006). "Profile of Susan Band Horwitz". PNAS. 103 (27): 10163–10165. Bibcode:2006PNAS..10310163D. doi: 10.1073/pnas.0604639103 . PMC   1502428 . PMID   16801530.
  4. 1 2 Erwin, Becky; Greenwell, Claire. "The Honorable Edward M. Kennedy, Mina J. Bissell, Susan Band Horwitz, and Jon M. Huntsman to Receive American Cancer Society Highest Honor". American Cancer Society. Retrieved 24 March 2016.
  5. 2019 Canada Gairdner International Award
  6. "2020 Szent-Gyorgyi Prize Awarded to a Pioneering Researcher Who Has Unlocked Workings of Cancer Drugs of Natural Product Origin". National Foundation for Cancer Research . 13 February 2020. Retrieved 24 February 2021.