Switched video

Last updated
How switched video works in a cable company's last mile compared to a conventional network. Cable Switched video Network Diagram.png
How switched video works in a cable company's last mile compared to a conventional network.

Switched video or switched digital video (SDV), sometimes referred to as switched broadcast (SWB), is a telecommunications industry term for a network scheme for distributing digital video via a cable. Switched video sends the digital video in a more efficient manner so that additional uses may be made of the freed up bandwidth. The scheme applies to digital video distribution both on typical cable TV systems using QAM channels, or on IPTV systems.

Contents

Description

In hybrid fibre-coaxial systems, a fiber optic network extending from the operator's head end carries all video channels out to a fiber optic node which services any number of homes ranging from 1 to 2000. From this point, all channels are sent via coaxial cable to each of the homes. Note that only a percentage of these homes are actively watching channels at a given time. Rarely are all channels being accessed by the homes in the service group.

In a switched video system, the unwatched channels do not need to be sent.

In cable TV systems in the United States, equipment in the home sends a channel request signal back to the distribution hub. If a channel is not currently being transmitted on the coaxial line, the distribution hub allocates a new QAM channel and transmits the new channel to the coaxial cable via the fiber optic node. For this to work, the equipment in the home must have two-way communication ability. Switched video uses the same mechanisms as video on demand and may be viewed as a non-ending video on demand show that any number of users may share.

Technical

Two-way communication is handled differently between cable and IPTV schemes. IPTV uses Internet communication protocols but requires an entirely new video distribution infrastructure. Cable companies in the United States elected the less costly approach of upgrading existing infrastructure, and European operators may well take the same approach. In the upgrade approach, various proprietary schemes use specific frequencies for passing messages back to the distribution hub.

For a switched video system to work on cable systems, all digital television users in a subscription group must have devices capable of communicating to the distribution hub in a compatible manner. Unlike other features dependent on two-way communication such as video on demand, the requirement to upgrade all digital set-top boxes within a group makes conversion to switched video extremely expensive. CableLabs proposed in the CableCARD 2.0 specification that two-way communication be supported with a scheme which required more powerful hardware capable of running Java programs. Many cable companies have indicated they will build lower cost devices that do not require this OCAP programming environment, so that upgrading to a switched video system would not be as costly. Consumer electronics companies also prefer a more light weight solution for two-way communication, and so absent a standard for two-way communication, the conversion to switched video may require many years to complete.

History

BigBand Networks (acquired by Arris Group in 2011 [1] ) was the first pioneer in the field of switched video, and received the Technology & Engineering Emmy Award in 2008 for innovation in the HFC market. [2]

Major vendors like Arris Group and Cisco also provide SDV solutions for the cable operators. There is also an emerging market for back office applications to analyze and control the performance of SDV systems. Smaller vendors are starting to offer alternate solutions fully compatible with the major vendors technology.

See also

Related Research Articles

Cable television Television content transmitted via signals on coaxial cable

Cable television is a system of delivering television programming to consumers via radio frequency (RF) signals transmitted through coaxial cables, or in more recent systems, light pulses through fibre-optic cables. This contrasts with broadcast television, in which the television signal is transmitted over-the-air by radio waves and received by a television antenna attached to the television; or satellite television, in which the television signal is transmitted over-the-air by radio waves from a communications satellite orbiting the Earth, and received by a satellite dish antenna on the roof. FM radio programming, high-speed Internet, telephone services, and similar non-television services may also be provided through these cables. Analog television was standard in the 20th century, but since the 2000s, cable systems have been upgraded to digital cable operation.

Cable modem Networking device

A cable modem is a type of network bridge that provides bi-directional data communication via radio frequency channels on a hybrid fibre-coaxial (HFC), radio frequency over glass (RFoG) and coaxial cable infrastructure. Cable modems are primarily used to deliver broadband Internet access in the form of cable Internet, taking advantage of the high bandwidth of a HFC and RFoG network. They are commonly deployed in the Americas, Asia, Australia, and Europe.

Data Over Cable Service Interface Specification (DOCSIS) is an international telecommunications standard that permits the addition of high-bandwidth data transfer to an existing cable television (CATV) system. It is used by many cable television operators to provide cable Internet access over their existing hybrid fiber-coaxial (HFC) infrastructure.

Digital cable is the distribution of cable television using digital data and video compression. The technology was developed by General Instrument, which was succeeded by Motorola and subsequently by ARRIS Group. Cable companies converted to digital cable during the 2000s, during the period that broadcast television converted to the digital HDTV standard, which was incompatible with existing analog cable systems. In addition to providing higher resolution HD video, digital cable systems provide more services such as pay-per-view programming, cable internet access and cable telephone services. Most digital cable signals are encrypted, which reduced the incidence of cable television piracy which occurred in analog systems.

Cable television headend

A cable television headend is a master facility for receiving television signals for processing and distribution over a cable television system. A headend facility may be staffed or unstaffed and is typically surrounded by some type of security fencing. The building is typically sturdy and purpose-built to provide security, cooling, and easy access for the electronic equipment used to receive and re-transmit video over the local cable infrastructure. One can also find head ends in power-line communication (PLC) substations and Internet communications networks.

Hybrid fiber-coaxial (HFC) is a telecommunications industry term for a broadband network that combines optical fiber and coaxial cable. It has been commonly employed globally by cable television operators since the early 1990s.

Cable modem termination system Equipment used to provide high speed data services

A cable modem termination system (CMTS) is a piece of equipment, typically located in a cable company's headend or hubsite, which is used to provide high speed data services, such as cable Internet or Voice over Internet Protocol, to cable subscribers. A CMTS provides many of the same functions provided by the DSLAM in a DSL system.

Internet Protocol television Television transmitted over a computer network

Internet Protocol television (IPTV) is the delivery of television content over Internet Protocol (IP) networks. This is in contrast to delivery through traditional terrestrial, satellite, and cable television formats. Unlike downloaded media, IPTV offers the ability to stream the source media continuously. As a result, a client media player can begin playing the content almost immediately. This is known as streaming media.

Long Reach Ethernet (LRE) was a proprietary networking protocol marketed by Cisco Systems, intended to support multi-megabit performance over telephone-grade unshielded twisted pair wiring over distances up to 5,000 feet (1.5 km). Supporting such distance ranges, LRE is technically classified a Metropolitan area network (MAN) technology. Technically the protocol was similar to very-high-bitrate digital subscriber line (VDSL), practically Ethernet over VDSL (EoVDSL).

CableCARD Digital cable smart card

CableCARD is a special-use PC Card device that allows consumers in the United States to view and record digital cable television channels on digital video recorders, personal computers and television sets on equipment such as a set-top box not provided by a cable television company. The card is usually provided by the local cable operator, typically for a nominal monthly fee.

A passive optical network (PON) is a fiber-optic telecommunications technology for delivering broadband network access to end-customers. Its architecture implements a point-to-multipoint topology in which a single optical fiber serves multiple endpoints by using unpowered (passive) fiber optic splitters to divide the fiber bandwidth among the endpoints. Passive optical networks are often referred to as the last mile between an Internet service provider (ISP) and its customers.

Scientific Atlanta

Scientific Atlanta, Inc. was a Georgia, United States-based manufacturer of cable television, telecommunications, and broadband equipment. Scientific Atlanta was founded in 1951 by a group of engineers from the Georgia Institute of Technology, and was purchased by Cisco Systems in 2005 for $6.9 billion after Cisco received antitrust clearance for the purchase. The Cisco acquisition of Scientific Atlanta was ranked in the top 10 of largest technology acquisitions in history and was Cisco's largest acquisition to date. Prior to the purchase, Scientific Atlanta had been a Fortune 500 company and was one of the top 25 largest corporations in Georgia.

Triple play (telecommunications)

In telecommunications, triple play service is a marketing term for the provisioning, over a single broadband connection, of two bandwidth-intensive services, broadband Internet access and television, and the latency-sensitive telephone. Triple play focuses on a supplier convergence rather than solving technical issues or a common standard. However, standards like G.hn might deliver all these services on a common technology.

Fiber to the <i>x</i> Broadband network architecture term

Fiber to the x or fiber in the loop is a generic term for any broadband network architecture using optical fiber to provide all or part of the local loop used for last mile telecommunications. As fiber optic cables are able to carry much more data than copper cables, especially over long distances, copper telephone networks built in the 20th century are being replaced by fiber.

Optical networking is a means of communication that uses signals encoded in light to transmit information in various types of telecommunications networks. These include limited range local-area networks (LAN) or wide-area networks (WAN), which cross metropolitan and regional areas as well as long-distance national, international and transoceanic networks. It is a form of optical communication that relies on optical amplifiers, lasers or LEDs and wave division multiplexing (WDM) to transmit large quantities of data, generally across fiber-optic cables. Because it is capable of achieving extremely high bandwidth, it is an enabling technology for the Internet and telecommunication networks that transmit the vast majority of all human and machine-to-machine information.

Fiber-optic communication Method of transmitting information

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

BigBand Networks was a corporation headquartered in Redwood City, California, which became a division within Arris Group. BigBand manufactured and sold digital video and data processing products and services for digital video and cable modem termination systems (CMTS).

In telecommunications, radio frequency over glass (RFoG) is a deep-fiber network design in which the coax portion of the hybrid fiber coax (HFC) network is replaced by a single-fiber passive optical network (PON). Downstream and return-path transmission use different wavelengths to share the same fiber. The return-path wavelength standard is expected to be 1610 nm, but early deployments have used 1590 nm. Using 1590/1610 nm for the return path allows the fiber infrastructure to support both RFoG and a standards-based PON simultaneously, operating with 1490 nm downstream and 1310 nm return-path wavelengths.

Harmonic Inc. is an American technology company that develops and markets video routing, server, and storage products for companies that produce, process, and distribute video content for television and the Internet.

AT&T Internet is an AT&T brand of broadband internet service. Previously, AT&T Internet was branded as U-verse Internet and bundled with U-verse TV, which was spun off into the newly independent DirecTV in 2021. AT&T Internet plans powered by fiber-optic cable use the AT&T Fiber brand.

References

  1. "ARRIS ACQUIRES BIGBAND NETWORKS IN ALL CASH TRANSACTION".
  2. "Winners of the 59th Technology and Engineering Emmy Awards". Archived from the original on 2008-05-09. Retrieved 2011-03-28.