In electrical engineering, a synchronous condenser (sometimes called a syncon, synchronous capacitor or synchronous compensator) is a DC-excited synchronous motor, whose shaft is not connected to anything but spins freely. [1] Its purpose is not to convert electric power to mechanical power or vice versa, but to adjust conditions on the electric power transmission grid. Its field is controlled by a voltage regulator to either generate or absorb reactive power as needed to adjust the grid's voltage, or to improve power factor. The condenser’s installation and operation are identical to large electric motors and generators (some generators are actually designed to be able to operate as synchronous condensers with the prime mover disconnected [2] ).
Increasing the device's field excitation results in its furnishing reactive power (measured in units of var) to the system. Its principal advantage is the ease with which the amount of correction can be adjusted.
Synchronous condensers are an alternative to capacitor banks and static VAR compensators for power-factor correction in power grids. [3] One advantage is that the amount of reactive power from a synchronous condenser can be continuously adjusted. Reactive power from a capacitor bank decreases when grid voltage decreases while the reactive power from a synchronous condenser inherently increases as voltage decreases. [1] Additionally, synchronous condensers are more tolerant of power fluctuations and severe drops in voltage. [3] However, synchronous machines have higher energy losses than static capacitor banks. [1]
Most synchronous condensers connected to electrical grids are rated between 20 MVAR (megavar) and 200 MVAR and many are hydrogen cooled. There is no explosion hazard as long as the hydrogen concentration is maintained above 70%, typically above 91%. [4] A syncon can be 8 metres long and 5 meters tall, weighing 170 tonnes. [5]
Synchronous condensers also help stabilize grids. The inertial response of the machine and its inductance can help stabilize a power system during rapid fluctuations of loads such as those created by short circuits or electric arc furnaces. For this reason, large installations of synchronous condensers are sometimes used in association with high-voltage direct current converter stations to supply reactive power to the alternating current grid. Synchronous condensers are also finding use in facilitating the switchover between power grids [6] and providing power grid stabilization as turbine-based power generators are replaced with solar and wind energy. [7] [3]
A rotating coil [8] in a magnetic field tends to produce a sine-wave voltage. When connected to a circuit, some current will flow depending on how the voltage on the system is different from this open-circuit voltage. Note that mechanical torque (produced by a motor, required by a generator) corresponds only to the real power. Reactive power does not result in any torque.
As the mechanical load on a synchronous motor increases, the stator current increases regardless of the field excitation. For both under- and over-excited motors, the power factor (p.f.) tends to approach unity with increase in mechanical load. This change in power factor is larger than the change in with increase in load.
The phase of armature current varies with field excitation. The current has larger values for lower and higher values of excitation. In between, the current has minimum value corresponding to a particular excitation (see graph on right). The variations of with excitation are known as curves because of their shape.
For the same mechanical load, the armature current varies with field excitation over a wide range and so causes the power factor also to vary accordingly. When over-excited, the motor runs with leading power factor (and supplies vars to the grid) and when under-excited with lagging power factor (and absorbs vars from the grid). In between, the power factor is unity. The minimum armature current corresponds to the point of unity power factor (voltage and current in phase).
As in a synchronous motor, the stator of the machine is connected to a three-phase supply of voltage (assumed to be constant), and this creates a rotating magnetic field within the machine. Likewise, the rotor is excited with a DC current to act as an electromagnet. In normal operation the rotor magnet follows the stator field at synchronous speed. The rotating electromagnet induces a three-phase voltage in the stator windings as if the machine were a synchronous generator. If the machine is considered to be ideal, with no mechanical, magnetic, or electrical losses, its equivalent circuit will be an AC generator in series with the winding inductance of the stator. The magnitude of depends on the excitation current and the speed of rotation, and as the latter is fixed, depends only on . If is critically adjusted to a value , will be equal and opposite to , and the current in the stator will be zero. This corresponds to the minimum in the curve shown above. If, however, is increased above , will exceed , and the difference is accounted for by a voltage appearing across the stator inductance : where is the stator reactance. Now the stator current is no longer zero. Since the machine is ideal, , and will all be in phase, and will be entirely reactive (i.e. in phase quadrature). Viewed from the supply side of the machine's terminals, a negative reactive current will flow out of the terminals, and the machine will therefore appear as a capacitor, the magnitude of whose reactance will fall as increases above . If is adjusted to be less than , will exceed , and a positive reactive current will flow into the machine. The machine will then appear as an inductor whose reactance falls as is reduced further. These conditions correspond to the two rising arms of the V-curves (above). In a practical machine with losses, the equivalent circuit will contain a resistor in parallel with the terminals to represent mechanical and magnetic losses, and another resistor in series with the generator and L, representing copper losses in the stator. Thus in a practical machine will contain a small in-phase component, and will not fall to zero.
An over-excited synchronous motor has a leading power factor. This makes it useful for power-factor correction of industrial loads. Both transformers and induction motors draw lagging (magnetising) currents from the line. On light loads, the power drawn by induction motors has a large reactive component and the power factor has a low value. The added current flowing to supply reactive power creates additional losses in the power system. In an industrial plant, synchronous motors can be used to supply some of the reactive power required by induction motors. This improves the plant power factor and reduces the reactive current required from the grid.
A synchronous condenser provides stepless automatic power-factor correction with the ability to produce up to 150% additional vars. The system produces no switching transients and is not affected by system electrical harmonics (some harmonics can even be absorbed by synchronous condensers). They will not produce excessive voltage levels and are not susceptible to electrical resonances. Because of the rotating inertia of the synchronous condenser, it can provide limited voltage support during very short power drops.
Rotating synchronous condensers were introduced in 1930s [2] and were common in 1950s, but due to high costs were eventually displaced in new installations by the static var compensators (SVCs). [2] They remain an alternative (or a supplement) to capacitors for power-factor correction because of problems that have been experienced with harmonics causing capacitor overheating and catastrophic failures. Synchronous condensers are also useful for supporting voltage levels. The reactive power produced by a capacitor bank is in direct proportion to the square of its terminal voltage, and if the system voltage decreases, the capacitors produce less reactive power, when it is most needed, [2] while if the system voltage increases the capacitors produce more reactive power, which exacerbates the problem. In contrast, with a constant field, a synchronous condenser naturally supplies more reactive power to a low voltage and absorbs more reactive power from a high voltage, plus the field can be controlled. This reactive power improves voltage regulation in situations such as when starting large motors, or where power must travel long distances from where it is generated to where it is used, as is the case with power wheeling, the transmission of electric power from one geographic region to another within a set of interconnected electric power systems.
When compared to an SVC, the synchronous condenser has a few advantages: [2]
Synchronous condensers may also be referred to as Dynamic Power Factor Correction systems. These machines can prove very effective when advanced controls are utilized. A PLC based controller with PF controller and regulator will allow the system to be set to meet a given power factor or can be set to produce a specified amount of reactive power.
On electric power systems, synchronous condensers can be used to control the voltage on long transmission lines, especially for lines with a relatively high ratio of inductive reactance to resistance. [9]
In addition to purpose-built units, existing steam or combustion turbines can be retrofit for use as a syncon. In this situation, the turbine can be retrofit with either an auxiliary starting motor, use the existing generator as an electric means of startup, or a synchronous self-shifting (SSS) clutch with the existing turbine/fuel source. [10] Using a separate starter motor is usually recommended instead of the existing generator for startup, as the generator shaft/coupling generally can't withstand the torques imposed on them during startup. Using purely electric startup methods, the syncon relies on the starter motor to provide an initial startup, and the generator or auxiliary motor provide the system with the necessary rotational inertia to produce reactive power. With the SSS clutch retrofit, the existing turbine setup is largely reused. Here, the turbine uses its existing fuel source to start and sync to the grid, which is when the SSS clutch disconnects the turbine and generator. The generator thus uses grid energy to keep spinning, to provide leading or lagging reactive power as needed. Each setup has its own advantages and disadvantages: the electric drive only systems do not require combustion from the old turbines, where an old generation system would generally produce more emissions than a newer one of the same fuel type while the combustion driven system would have the ability to alternate between generating real and reactive power as needed. [11]
In electrical engineering, the power factor of an AC power system is defined as the ratio of the real power absorbed by the load to the apparent power flowing in the circuit. Real power is the average of the instantaneous product of voltage and current and represents the capacity of the electricity for performing work. Apparent power is the product of root mean square (RMS) current and voltage. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the apparent power may be greater than the real power, so more current flows in the circuit than would be required to transfer real power alone. A power factor magnitude of less than one indicates the voltage and current are not in phase, reducing the average product of the two. A negative power factor occurs when the device generates real power, which then flows back towards the source.
In electricity generation, a generator is a device that converts motion-based power or fuel-based power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all the power for electrical grids.
A flywheel is a mechanical device that uses the conservation of angular momentum to store rotational energy, a form of kinetic energy proportional to the product of its moment of inertia and the square of its rotational speed. In particular, assuming the flywheel's moment of inertia is constant then the stored (rotational) energy is directly associated with the square of its rotational speed.
An induction motor or asynchronous motor is an AC electric motor in which the electric current in the rotor that produces torque is obtained by electromagnetic induction from the magnetic field of the stator winding. An induction motor therefore needs no electrical connections to the rotor. An induction motor's rotor can be either wound type or squirrel-cage type.
A Flexible Alternating Current Transmission System (FACTS) is a family of Power-Electronic based devices designed for use on an Alternating Current (AC) Transmission System to improve and control Power Flow and support Voltage. FACTs devices are alternatives to traditional electric grid solutions and improvements, where building additional Transmission Lines or Substation is not economically or logistically viable.
In Electrical Engineering, a static VAR compensator (SVC) is a set of electrical devices for providing fast-acting reactive power on high-voltage electricity transmission networks. SVCs are part of the flexible AC transmission system device family, regulating voltage, power factor, harmonics and stabilizing the system. A static VAR compensator has no significant moving parts. Prior to the invention of the SVC, power factor compensation was the preserve of large rotating machines such as synchronous condensers or switched capacitor banks.
A synchronous electric motor is an AC electric motor in which, at steady state, the rotation of the shaft is synchronized with the frequency of the supply current; the rotation period is exactly equal to an integer number of AC cycles. Synchronous motors use electromagnets as the stator of the motor which create a magnetic field that rotates in time with the oscillations of the current. The rotor with permanent magnets or electromagnets turns in step with the stator field at the same rate and as a result, provides the second synchronized rotating magnet field. Doubly fed synchronous motors use independently-excited multiphase AC electromagnets for both rotor and stator.
In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt.
In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term still encountered in a few compound names, such as the condenser microphone. It is a passive electronic component with two terminals.
A load bank is a piece of electrical test equipment used to simulate an electrical load, to test an electric power source without connecting it to its normal operating load. During testing, adjustment, calibration, or verification procedures, a load bank is connected to the output of a power source, such as an electric generator, battery, servoamplifier or photovoltaic system, in place of its usual load. The load bank presents the source with electrical characteristics similar to its standard operating load, while dissipating the power output that would normally be consumed by it. The power is usually converted to heat by a heavy duty resistor or bank of resistive heating elements in the device, and the heat removed by a forced air or water cooling system. The device usually also includes instruments for metering, load control, and overload protection. Load banks can either be permanently installed at a facility to be connected to a power source when needed, or portable versions can be used for testing power sources such as standby generators and batteries. They are necessary adjuncts to replicate, prove, and verify the real-life demands on critical power systems. They are also used during operation of intermittent renewable power sources such as wind turbines to shed excess power that the electric power grid cannot absorb.
Doubly fed electric machines, Doubly fed induction generator (DFIG), or slip-ring generators, are electric motors or electric generators, where both the field magnet windings and armature windings are separately connected to equipment outside the machine.
An induction generator or asynchronous generator is a type of alternating current (AC) electrical generator that uses the principles of induction motors to produce electric power. Induction generators operate by mechanically turning their rotors faster than synchronous speed. A regular AC induction motor usually can be used as a generator, without any internal modifications. Because they can recover energy with relatively simple controls, induction generators are useful in applications such as mini hydro power plants, wind turbines, or in reducing high-pressure gas streams to lower pressure.
In Electrical Engineering, a static synchronous compensator (STATCOM) is a shunt-connected, reactive compensation device used on transmission networks. It uses power electronics to form a voltage-source converter that can act as either a source or sink of reactive AC power to an electricity network. It is a member of the FACTS family of devices.
In an alternating current (AC) electric power system, synchronization is the process of matching the frequency, phase and voltage of a generator or other source to an electrical grid in order to transfer power. If two unconnected segments of a grid are to be connected to each other, they cannot safely exchange AC power until they are synchronized.
An electric power system is a network of electrical components deployed to supply, transfer, and use electric power. An example of a power system is the electrical grid that provides power to homes and industries within an extended area. The electrical grid can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centers to the load centers, and the distribution system that feeds the power to nearby homes and industries.
A permanent magnet synchronous generator is a generator where the excitation field is provided by a permanent magnet instead of a coil. The term synchronous refers here to the fact that the rotor and magnetic field rotate with the same speed, because the magnetic field is generated through a shaft-mounted permanent magnet mechanism, and current is induced into the stationary armature.
Synchronverters or virtual synchronous generators are inverters which mimic synchronous generators (SG) to provide "synthetic inertia" for ancillary services in electric power systems. Inertia is a property of standard synchronous generators associated with the rotating physical mass of the system spinning at a frequency proportional to the electricity being generated. Inertia has implications towards grid stability as work is required to alter the kinetic energy of the spinning physical mass and therefore opposes changes in grid frequency. Inverter-based generation inherently lacks this property as the waveform is being created artificially via power electronics.
Capability curve of an electrical generator describes the limits of the active (MW) and reactive power (MVAr) that the generator can provide. The curve represents a boundary of all operating points in the MW/MVAr plane; it is typically drawn with the real power on the horizontal axis, and, for the synchronous generator, resembles a letter D in shape, thus another name for the same curve, D-curve. In some sources the axes are switched, and the curve gets a dome-shaped appearance.
Voltage control and reactive power management are two facets of an ancillary service that enables reliability of the transmission networks and facilitates the electricity market on these networks. Both aspects of this activity are intertwined, so within this article the term voltage control will be primarily used to designate this essentially single activity, as suggested by Kirby & Hirst (1997). Voltage control does not include reactive power injections to dampen the grid oscillations; these are a part of a separate ancillary service, so-called system stability service. The transmission of reactive power is limited by its nature, so the voltage control is provided through pieces of equipment distributed throughout the power grid, unlike the frequency control that is based on maintaining the overall active power balance in the system.
In an electrical grid, the short circuit ratio is the ratio of: the short circuit apparent power (SCMVA) in the case of a line-line-line-ground (3LG) fault at the location in the grid where some generator is connected, to: the power rating of the generator itself (GMW).