Syndecan-2

Last updated
SDC2
Identifiers
Aliases SDC2 , CD362, HSPG, HSPG1, SYND2, syndecan 2
External IDs OMIM: 142460 MGI: 1349165 HomoloGene: 2253 GeneCards: SDC2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002998

NM_008304

RefSeq (protein)

NP_002989

NP_032330

Location (UCSC) Chr 8: 96.49 – 96.61 Mb Chr 15: 32.92 – 33.04 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Syndecan-2 is a protein that in humans is encoded by the SDC2 gene. [5]

Contents

Function

The protein encoded by this gene is a transmembrane (type I) heparan sulfate proteoglycan and is a member of the syndecan proteoglycan family. The syndecans mediate cell binding, cell signaling, and cytoskeletal organization and syndecan receptors are required for internalization of the HIV-1 tat protein. The syndecan-2 protein functions as an integral membrane protein and participates in cell proliferation, cell migration and cell-matrix interactions via its receptor for extracellular matrix proteins. Altered syndecan-2 expression has been detected in several different tumor types. [6]

Interactions

SDC2 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Versican</span> Protein-coding gene in the species Homo sapiens

Versican is a large extracellular matrix proteoglycan that is present in a variety of human tissues. It is encoded by the VCAN gene.

Fibroblast growth factors (FGF) are a family of cell signalling proteins produced by macrophages; they are involved in a wide variety of processes, most notably as crucial elements for normal development in animal cells. Any irregularities in their function lead to a range of developmental defects. These growth factors typically act as systemic or locally circulating molecules of extracellular origin that activate cell surface receptors. A defining property of FGFs is that they bind to heparin and to heparan sulfate. Thus, some are sequestered in the extracellular matrix of tissues that contains heparan sulfate proteoglycans and are released locally upon injury or tissue remodeling.

<span class="mw-page-title-main">FGF1</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor 1, (FGF-1) also known as acidic fibroblast growth factor (aFGF), is a growth factor and signaling protein encoded by the FGF1 gene. It is synthesized as a 155 amino acid polypeptide, whose mature form is a non-glycosylated 17-18 kDa protein. Fibroblast growth factor protein was first purified in 1975, but soon afterwards others using different conditions isolated acidic FGF, Heparin-binding growth factor-1, and Endothelial cell growth factor-1. Gene sequencing revealed that this group was actually the same growth factor and that FGF1 was a member of a family of FGF proteins.

<span class="mw-page-title-main">Perlecan</span>

Perlecan (PLC) also known as basement membrane-specific heparan sulfate proteoglycan core protein (HSPG) or heparan sulfate proteoglycan 2 (HSPG2), is a protein that in humans is encoded by the HSPG2 gene. The HSPG2 gene codes for a 4,391 amino acid protein with a molecular weight of 468,829. It is one of the largest known proteins. The name perlecan comes from its appearance as a "string of pearls" in rotary shadowed images.

<span class="mw-page-title-main">Heparan sulfate</span> Macromolecule

Heparan sulfate (HS) is a linear polysaccharide found in all animal tissues. It occurs as a proteoglycan in which two or three HS chains are attached in close proximity to cell surface or extracellular matrix proteins. In this form, HS binds to a variety of protein ligands, including Wnt, and regulates a wide range of biological activities, including developmental processes, angiogenesis, blood coagulation, abolishing detachment activity by GrB, and tumour metastasis. HS has also been shown to serve as cellular receptor for a number of viruses, including the respiratory syncytial virus. One study suggests that cellular heparan sulfate has a role in SARS-CoV-2 Infection, particularly when the virus attaches with ACE2.

<span class="mw-page-title-main">CTGF</span> Protein-coding gene in the species Homo sapiens

CTGF, also known as CCN2 or connective tissue growth factor, is a matricellular protein of the CCN family of extracellular matrix-associated heparin-binding proteins. CTGF has important roles in many biological processes, including cell adhesion, migration, proliferation, angiogenesis, skeletal development, and tissue wound repair, and is critically involved in fibrotic disease and several forms of cancers.

<span class="mw-page-title-main">Aggrecan</span>

Aggrecan (ACAN), also known as cartilage-specific proteoglycan core protein (CSPCP) or chondroitin sulfate proteoglycan 1, is a protein that in humans is encoded by the ACAN gene. This gene is a member of the lectican (chondroitin sulfate proteoglycan) family. The encoded protein is an integral part of the extracellular matrix in cartilagenous tissue and it withstands compression in cartilage.

<span class="mw-page-title-main">Syndecan 1</span> Protein which in humans is encoded by the SDC1 gene

Syndecan 1 is a protein which in humans is encoded by the SDC1 gene. The protein is a transmembrane heparan sulfate proteoglycan and is a member of the syndecan proteoglycan family. The syndecan-1 protein functions as an integral membrane protein and participates in cell proliferation, cell migration and cell-matrix interactions via its receptor for extracellular matrix proteins. Syndecan-1 is a sponge for growth factors and chemokines, with binding largely via heparan sulfate chains. The syndecans mediate cell binding, cell signaling, and cytoskeletal organization and syndecan receptors are required for internalization of the HIV-1 tat protein.

<span class="mw-page-title-main">Syndecan</span>

Syndecans are single transmembrane domain proteins that are thought to act as coreceptors, especially for G protein-coupled receptors. More specifically, these core proteins carry three to five heparan sulfate and chondroitin sulfate chains, i.e. they are proteoglycans, which allow for interaction with a large variety of ligands including fibroblast growth factors, vascular endothelial growth factor, transforming growth factor-beta, fibronectin and antithrombin-1. Interactions between fibronectin and some syndecans can be modulated by the extracellular matrix protein tenascin C.

<span class="mw-page-title-main">Heparin-binding EGF-like growth factor</span> Protein-coding gene in the species Homo sapiens

Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of proteins that in humans is encoded by the HBEGF gene.

<span class="mw-page-title-main">Syndecan-4</span> Protein-coding gene in the species Homo sapiens

Syndecan-4 is a protein that in humans is encoded by the SDC4 gene. Syndecan-4 is one of the four vertebrate syndecans and has a molecular weight of ~20 kDa. Syndecans are the best-characterized plasma membrane proteoglycans. Their intracellular domain of membrane-spanning core protein interacts with actin cytoskeleton and signaling molecules in the cell cortex. Syndecans are normally found on the cell surface of fibroblasts and epithelial cells. Syndecans interact with fibronectin on the cell surface, cytoskeletal and signaling proteins inside the cell to modulate the function of integrin in cell-matrix adhesion. Also, syndecans bind to FGFs and bring them to the FGF receptor on the same cell. As a co-receptor or regulator, mutated certain proteoglycans could cause severe developmental defects, like disordered distribution or inactivation of signaling molecules.

<span class="mw-page-title-main">Heparanase</span> Mammalian protein found in Homo sapiens

Heparanase, also known as HPSE, is an enzyme that acts both at the cell-surface and within the extracellular matrix to degrade polymeric heparan sulfate molecules into shorter chain length oligosaccharides.

<span class="mw-page-title-main">Laminin, alpha 3</span> Protein-coding gene in the species Homo sapiens

Laminin subunit alpha-3 is a protein that in humans is encoded by the LAMA3 gene.

<span class="mw-page-title-main">Laminin subunit alpha-1</span> Protein-coding gene in the species Homo sapiens

Laminin subunit alpha-1 is a protein that in humans is encoded by the LAMA1 gene.

<span class="mw-page-title-main">Syndecan-3</span> Protein-coding gene in the species Homo sapiens

Syndecan-3 is a protein that in humans is encoded by the SDC3 gene.

<span class="mw-page-title-main">Glypican 1</span> Protein-coding gene in the species Homo sapiens

Glypican-1 (GPC1) is a protein that in humans is encoded by the GPC1 gene. GPC1 is encoded by human GPC1 gene located at 2q37.3. GPC1 contains 558 amino acids with three predicted heparan sulfate chains.

<span class="mw-page-title-main">FBLN2</span> Protein-coding gene in the species Homo sapiens

Fibulin-2 is a protein that in humans is encoded by the FBLN2 gene.

<span class="mw-page-title-main">MMP17</span> Protein-coding gene in the species Homo sapiens

Matrix metalloproteinase-17 (MMP-17) also known as membrane-type matrix metalloproteinase 4 is an enzyme that in humans is encoded by the MMP17 gene.

<span class="mw-page-title-main">SULF1</span> Protein-coding gene in the species Homo sapiens

Sulfatase 1, also known as SULF1, is an enzyme which in humans is encoded by the SULF1 gene.

<span class="mw-page-title-main">Carbohydrate sulfotransferase</span> Class of enzymes which transfer an –SO3 group to glycoproteins and lipids

In biochemistry, carbohydrate sulfotransferases are enzymes within the class of sulfotransferases which catalyze the transfer of the sulfate functional group to carbohydrate groups in glycoproteins and glycolipids. Carbohydrates are used by cells for a wide range of functions from structural purposes to extracellular communication. Carbohydrates are suitable for such a wide variety of functions due to the diversity in structure generated from monosaccharide composition, glycosidic linkage positions, chain branching, and covalent modification. Possible covalent modifications include acetylation, methylation, phosphorylation, and sulfation. Sulfation, performed by carbohydrate sulfotransferases, generates carbohydrate sulfate esters. These sulfate esters are only located extracellularly, whether through excretion into the extracellular matrix (ECM) or by presentation on the cell surface. As extracellular compounds, sulfated carbohydrates are mediators of intercellular communication, cellular adhesion, and ECM maintenance.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000169439 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022261 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. David G, Bai XM, Van der Schueren B, Marynen P, Cassiman JJ, Van den Berghe H (June 1994). "Spatial and temporal changes in the expression of fibroglycan (syndecan-2) during mouse embryonic development". Development. 119 (3): 841–54. doi:10.1242/dev.119.3.841. PMID   8187643.
  6. "Entrez Gene: SDC2 syndecan 2".
  7. Maximov A, Tang TS, Bezprozvanny I (February 2003). "Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons". Mol. Cell. Neurosci. 22 (2): 271–83. doi:10.1016/s1044-7431(02)00027-1. PMID   12676536. S2CID   2317354.
  8. Cohen AR, Woods DF, Marfatia SM, Walther Z, Chishti AH, Anderson JM, Wood DF (July 1998). "Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells". J. Cell Biol. 142 (1): 129–38. doi:10.1083/jcb.142.1.129. PMC   2133028 . PMID   9660868.
  9. Utani A, Nomizu M, Matsuura H, Kato K, Kobayashi T, Takeda U, Aota S, Nielsen PK, Shinkai H (August 2001). "A unique sequence of the laminin alpha 3 G domain binds to heparin and promotes cell adhesion through syndecan-2 and -4". J. Biol. Chem. 276 (31): 28779–88. doi: 10.1074/jbc.M101420200 . PMID   11373281.
  10. Granés F, Urena JM, Rocamora N, Vilaró S (April 2000). "Ezrin links syndecan-2 to the cytoskeleton". J. Cell Sci. 113 ( Pt 7) (7): 1267–76. doi:10.1242/jcs.113.7.1267. PMID   10704377.

Further reading