Syringomycin E

Last updated
Syringomycin E
SyringomycinE.png
Identifiers
  • 124888-22-8
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C53H85ClN14O17/c1-3-5-6-7-8-12-17-30(70)25-39(72)60-37-28-85-52(84)40(38(71)26-54)67-50(81)41(42(73)51(82)83)68-46(77)31(14-4-2)61-47(78)35(24-29-15-10-9-11-16-29)65-43(74)32(18-13-23-59-53(57)58)62-44(75)33(19-21-55)63-45(76)34(20-22-56)64-48(79)36(27-69)66-49(37)80/h9-11,14-16,30,32-38,40-42,69-71,73H,3-8,12-13,17-28,55-56H2,1-2H3,(H,60,72)(H,61,78)(H,62,75)(H,63,76)(H,64,79)(H,65,74)(H,66,80)(H,67,81)(H,68,77)(H,82,83)(H4,57,58,59)/b31-14-/t30?,32-,33-,34-,35-,36-,37-,38+,40-,41+,42?/m0/s1
    Key: YMFYPHGOLKNWQN-WMJMADPPSA-N
  • CCCCCCCCC(CC(=O)N[C@H]1COC(=O)[C@@H](NC(=O)[C@H](NC(=O)/C(=C/CC)/NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC1=O)CO)CCN)CCN)CCCN=C(N)N)CC2=CC=CC=C2)C(C(=O)O)O)[C@@H](CCl)O)O
Properties
C53H85ClN14O17
Molar mass 1225.78
Appearancewhite solid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Syringomycin E is a member of a class of lipodepsinonapeptide molecules that are secreted by the plant pathogen Pseudomonas syringae . Lipodepsinonapeptides comprise a closed ring of nine nonribosomally synthesized amino acids bonded to a fatty acid hydrocarbon tail. [1] A commonly encountered pathovar (pv) of P. syringae is P. syringae pv syringae, which secretes a number of closely related forms of the molecule. Syringomycins are virulence determinants, which means that their secretion is required for the manifestation of disease symptoms on a number of stone fruit crop plants.

Syringomycins have two widely recognized mechanisms of action. [2] They can function as detergents which are powerful enough to dissolve plant membranes at high concentrations. It is not clear whether concentrations high enough to dissolve membranes are ever reached in planta. In addition to being surfactants, aggregates of syringomycins can insert into plant cell membranes and form small pores. These pores allow the leakage of ions from the plant cell cytoplasm. Affected plant cells are unable to maintain their required levels of electrolyte and ultimately cell death and lysis occurs. It is believed that P. syringae benefits from the release of nutrients that occurs as a consequence of cellular lysis.

The biosynthesis of this class of molecules has been elucidated. [3]

Related Research Articles

Cytosol Liquid found in cells

The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells. It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondrion into many compartments.

Exotoxin

An exotoxin is a toxin secreted by bacteria. An exotoxin can cause damage to the host by destroying cells or disrupting normal cellular metabolism. They are highly potent and can cause major damage to the host. Exotoxins may be secreted, or, similar to endotoxins, may be released during lysis of the cell. Gram negative pathogens may secrete outer membrane vesicles containing lipopolysaccharide endotoxin and some virulence proteins in the bounding membrane along with some other toxins as intra-vesicular contents, thus adding a previously unforeseen dimension to the well-known eukaryote process of membrane vesicle trafficking, which is quite active at the host-pathogen interface.

A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins; that is they exist permanently within and span the membrane across which they transport substances. The proteins may assist in the movement of substances by facilitated diffusion or active transport. The two main types of proteins involved in such transport are broadly categorized as either channels or carriers. The solute carriers and atypical SLCs are secondary active or facilitative transporters in humans. Collectively membrane transporters and channels are transportome. Transportomes govern cellular influx and efflux of not only ions and nutrients but drugs as well.

Secretion is the movement of material from one point to another, such as a secreted chemical substance from a cell or gland. In contrast, excretion, is the removal of certain substances or waste products from a cell or organism. The classical mechanism of cell secretion is via secretory portals at the cell plasma membrane called porosomes. Porosomes are permanent cup-shaped lipoprotein structure at the cell plasma membrane, where secretory vesicles transiently dock and fuse to release intra-vesicular contents from the cell.

Jasmonate

Jasmonate (JA) and its derivatives are lipid-based plant hormones that regulate a wide range of processes in plants, ranging from growth and photosynthesis to reproductive development. In particular, JAs are critical for plant defense against herbivory and plant responses to poor environmental conditions and other kinds of abiotic and biotic challenges. Some JAs can also be released as volatile organic compounds (VOCs) to permit communication between plants in anticipation of mutual dangers.

Siderophore Low-molecular-weight compounds produced by microorganisms and plants that aid in the transport and sequestration of iron

Siderophores (Greek: "iron carrier") are small, high-affinity iron-chelating compounds that are secreted by microorganisms such as bacteria and fungi and serve primarily to transport iron across cell membranes, although a widening range of siderophore functions is now being appreciated. Siderophores are among the strongest soluble Fe3+ binding agents known.

Antimicrobial peptides

Antimicrobial peptides (AMPs), also called host defense peptides (HDPs) are part of the innate immune response found among all classes of life. Fundamental differences exist between prokaryotic and eukaryotic cells that may represent targets for antimicrobial peptides. These peptides are potent, broad spectrum antibiotics which demonstrate potential as novel therapeutic agents. Antimicrobial peptides have been demonstrated to kill Gram negative and Gram positive bacteria, enveloped viruses, fungi and even transformed or cancerous cells. Unlike the majority of conventional antibiotics it appears that antimicrobial peptides frequently destabilize biological membranes, can form transmembrane channels, and may also have the ability to enhance immunity by functioning as immunomodulators.

Cetrimonium bromide Chemical compound

Cetrimonium bromide ([(C16H33)N(CH3)3]Br; cetyltrimethylammonium bromide; hexadecyltrimethylammonium bromide; CTAB) is a quaternary ammonium surfactant.

Surfactin Chemical compound

Surfactin is a very powerful surfactant commonly used as an antibiotic. It is a bacterial cyclic lipopeptide, largely prominent for its exceptional surfactant power. Its amphiphilic properties help this substance to survive in both hydrophilic and hydrophobic environments. It is an antibiotic produced by the Gram-positive endospore-forming bacteria Bacillus subtilis. In the course of various studies of its properties, surfactin was found to exhibit effective characteristics like antibacterial, antiviral, antifungal, anti-mycoplasma and hemolytic activities.

Phytotoxins are substances that are poisonous or toxic to the growth of plants. Phytotoxic substances may result from human activity, as with herbicides, or they may be produced by plants, by microorganisms, or by naturally occurring chemical reactions.

Cytolysin refers to the substance secreted by microorganisms, plants or animals that is specifically toxic to individual cells, in many cases causing their dissolution through lysis. Cytolysins that have a specific action for certain cells are named accordingly. For instance, the cytolysins responsible for the destruction of red blood cells, thereby liberating hemoglobins, are named hemolysins, and so on. Cytolysins may be involved in immunity as well as in venoms.

The gene-for-gene relationship was discovered by Harold Henry Flor who was working with rust of flax. Flor showed that the inheritance of both resistance in the host and parasite ability to cause disease is controlled by pairs of matching genes. One is a plant gene called the resistance (R) gene. The other is a parasite gene called the avirulence (Avr) gene. Plants producing a specific R gene product are resistant towards a pathogen that produces the corresponding Avr gene product. Gene-for-gene relationships are a widespread and very important aspect of plant disease resistance. Another example can be seen with Lactuca serriola versus Bremia lactucae.

<i>Pseudomonas syringae</i> Species of bacterium

Pseudomonas syringae is a rod-shaped, Gram-negative bacterium with polar flagella. As a plant pathogen, it can infect a wide range of species, and exists as over 50 different pathovars, all of which are available to researchers from international culture collections such as the NCPPB, ICMP, and others.

Hemolysin Molecule destroying the membrane of red blood cells

Hemolysins or haemolysins are lipids and proteins that cause lysis of red blood cells by disrupting the cell membrane. Although the lytic activity of some microbe-derived hemolysins on red blood cells may be of great importance for nutrient acquisition, many hemolysins produced by pathogens do not cause significant destruction of red blood cells during infection. However, hemolysins are often capable of lysing red blood cells in vitro.

Type three secretion system Protein appendage

Type three secretion system is a protein appendage found in several Gram-negative bacteria.

Halo blight

Halo blight of bean is a bacterial disease caused by Pseudomonas syringae pv. phaseolicola. Halo blight’s pathogen is a gram-negative, aerobic, polar-flagellated and non-spore forming bacteria. This bacterial disease was first discovered in the early 1920s, and rapidly became the major disease of beans throughout the world. The disease favors the places where temperatures are moderate and plentiful inoculum is available.

Tabtoxin Chemical compound

Tabtoxin, also known as wildfire toxin, is a simple monobactam phytotoxin produced by Pseudomonas syringae. It is the precursor to the antibiotic tabtoxinine β-lactam. Tabtoxin is a monocyclic β-lactam produced by P. syringae pv. tabaci, coronafaciens, and garcae. Pseudomonas syringae pv. tabaci, the causal agent of the wildfire of tobacco, produces the phytotoxin tabtoxin. tabtoxin-producing bacterium, P. syringae BR2, causes a disease of bean similar to tobacco wildfire. This organism is closely related to P. syringae pv. tabaci but cannot be classified in the pathovar tabaci because it is not pathogenic on tobacco. Tabtoxin has been shown to be a dipeptide precursor that must undergo hydrolysis by a peptidase to yield the biologically active form, tabtoxinine-p-lactam (TβL). Tabtoxin is required by BR2(R) for both chlorosis and lesion formation on bean. All mutations that affected tabtoxin production, whether spontaneous deletion or transposon induced, also affected lesion formation, and in all cases, restoration of tabtoxin production also restored pathogenic symptoms. Other factors may be required for BR2 to be pathogenic on bean, but apparently these are in addition to tabtoxin production.

Guard theory is a branch of immunology which concerns the innate sensing of stereotypical consequences of a virulence factor or pathogen. This is in contrast to the classical understanding of recognition by the innate immune system, which involves recognition of distinct microbial structures- pathogen-associated molecular patterns (PAMPs)- with pattern recognition receptors (PRRs). Some of these stereotypical consequences of virulence factors and pathogens may include altered endosomal trafficking and changes in the cytoskeleton. These recognition mechanisms would work to complement classical pattern recognition mechanisms.

The type VI secretion system (T6SS) is molecular machine used by a wide range of Gram-negative bacterial species to transport proteins from the interior of a bacterial cell across the cellular envelope into an adjacent target cell. While often reported that the T6SS was discovered in 2006 by researchers studying the causative agent of cholera, Vibrio cholerae, the first study demonstrating that T6SS genes encode a protein export apparatus was actually published in 2004, in a study of protein secretion by the fish pathogen Edwardsiella tarda.

The Pseudomonas syringaeHrpZ Cation Channel (HrpZ) Family is a member of the RTX-toxin superfamily. The Harpin-PSS protein is secreted by Pseudomonas syringae via the Hrp secretion system and elicits a hypersensitive response (HR) in non-host plants upon infection and pathogenicity in hosts. It contains several repetitive regions and exhibits two extended regions of moderate hydrophobicity that might serve as α-helical TMSs. The HrpZ cation channel is predicted to be largely of α-structure. HrpZ - a harpin - is a highly thermostable protein that exhibits multifunctional abilities, e.g., it elicits the hypersensitive response (HR), enhances plant growth, acts as a virulence factor, and forms pores in plant plasma membranes as well as artificial membranes. Homologues are not found in organisms other than P. syringae.

References

  1. Scholz-Schroeder B.K., Soule J.D., and Gross D. C. 2003. The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. Mol Plant Microbe Interact. 16:271-80
  2. Hutchison, M. L., Tester, M. A., and Gross D. C. 1995. Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: A model for the mechanism of action in the plant-pathogen interaction. Mol. Pl. Microb. Interact. 8:610-620.
  3. Blasiak, L. C., Vaillancourt, F. d. r. H., Walsh, C. T., Drennan, C. L., "Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis", Nature 2006, 440, 368. doi : 10.1038/nature04544