T-criterion

Last updated

The T-failure criterion is a set of material failure criteria that can be used to predict both brittle and ductile failure. [1] [2]

Contents

These criteria were designed as a replacement for the von Mises yield criterion which predicts the unphysical result that pure hydrostatic tensile loading of metals never leads to failure. The T-criteria use the volumetric stress in addition to the deviatoric stress used by the von Mises criterion and are similar to the Drucker Prager yield criterion. T-criteria have been designed on the basis of energy considerations and the observation that the reversible elastic energy density storage process has a limit which can be used to determine when a material has failed.

Description

Only in the case of pure shear does the strain energy density stored in the material and calculated by the area under the - curve, represent the total amount of energy stored. In all other cases, there is a divergence between the actual and calculated stored energy in the material, which is maximum in the case of pure hydrostatic loading, where, according to the von Mises criterion, no energy is stored. This paradox is resolved if a second constitutive equation is introduced, that relates hydrostatic pressure p with the volume change . These two curves, namely and (p-) are essential for a complete description of material behaviour up to failure. Thus, two criteria must be accounted for when considering failure and two constitutive equations that describe material response. According to this criterion, an upper limit to allowable strains is set either by a critical value ΤV,0 of the elastic energy density due to volume change (dilatational energy) or by a critical value ΤD,0 of the elastic energy density due to change in shape (distortional energy). The volume of material is considered to have failed by extensive plastic flow when the distortional energy Τd reaches the critical value ΤD,0 or by extensive dilatation when the dilatational energy Τv reaches a critical value ΤV,0. The two critical values ΤD,0 and ΤV,0 are considered material constants independent of the shape of the volume of material considered and the induced loading, but dependent on the strain rate and temperature.

Deployment for Isotropic Metals

For the development of the criterion, a continuum mechanics approach is adopted. The material volume is considered to be a continuous medium with no particular form or manufacturing defect. It is also considered to behave as a linear elastic isotropically hardening material, where stresses and strains are related by the generalized Hooke’s law and by the incremental theory of plasticity with the von Mises flow rule. For such materials, the following assumptions are considered to hold:
(a) The total increment of a strain component is decomposed into the elastic and the plastic increment and respectively:
(1)
(b) The elastic strain increment is given by Hooke’s law:
(2)
where the shear modulus, the Poisson’s ratio and the Krönecker delta.
(c) The plastic strain increment is proportional to the respective deviatoric stress:
(3)
where and an infinitesimal scalar. (3) implies that the plastic strain increment:

(d) The increment in plastic work per unit volume using (4.16) is:
(4)
and the increment in strain energy, , equals to the total differential of the potential :
(5)
where , and for metals following the von Mises yield law, by definition
(6)
(7)
are the equivalent stress and strain respectively. In (5) the first term of the right hand side, is the increment in elastic energy for unit volume change due to hydrostatic pressure. Its integral over a load path is the total amount of dilatational strain energy density stored in the material. The second term is the energy required for an infinitesimal distortion of the material. The integral of this quantity is the distortional strain energy density. The theory of plastic flow permits the evaluation of stresses, strains and strain energy densities along a path provided that in (3) is known. In elasticity, linear or nonlinear, . In the case of strain hardening materials, can be evaluated by recording the curve in a pure shear experiment. The hardening function after point “y” in Figure 1 is then:
(8)
and the infinitesimal scalar is: (9)
where is the infinitesimal increase in plastic work (see Figure 1). The elastic part of the total distortional strain energy density is:
(10)
where is the elastic part of the equivalent strain. When there is no nonlinear elastic behaviour, by integrating (4.22) the elastic distortional strain energy density is:
(11)
Similarly, by integrating the increment in elastic energy for unit volume change due to hydrostatic pressure, , the dilatational strain energy density is:
(12)
assuming that the unit volume change is the elastic straining, proportional to the hydrostatic pressure, p (Figure 2):
or (13)
where , and the bulk modulus of the material.
In summary, in order to use (12) and (13) to determine the failure of a material volume, the following assumptions hold:

Limitations

The criterion will not predict any failure due to distortion for elastic-perfectly plastic, rigid-plastic, or strain softening materials. For the case of nonlinear elasticity, appropriate calculations for the integrals in and (12) and (13) accounting for the nonlinear elastic material properties must be performed. The two threshold values for the elastic strain energy and are derived from experimental data. A drawback of the criterion is that elastic strain energy densities are small and comparatively hard to derive. Nevertheless, example values are presented in the literature as well as applications where the T-criterion appears to perform quite well.

Related Research Articles

<span class="mw-page-title-main">Composite material</span> Material made from a combination of two or more unlike substances

A composite material is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions. Composite materials with more than one distinct layer are called composite laminates.

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

Linear elasticity is a mathematical model as to how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.

<span class="mw-page-title-main">Fracture mechanics</span> Study of propagation of cracks in materials

Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.

<span class="mw-page-title-main">Klein–Nishina formula</span> Electron-photon scattering cross section

In particle physics, the Klein–Nishina formula gives the differential cross section of photons scattered from a single free electron, calculated in the lowest order of quantum electrodynamics. It was first derived in 1928 by Oskar Klein and Yoshio Nishina, constituting one of the first successful applications of the Dirac equation. The formula describes both the Thomson scattering of low energy photons and the Compton scattering of high energy photons, showing that the total cross section and expected deflection angle decrease with increasing photon energy.

A neo-Hookean solid is a hyperelastic material model, similar to Hooke's law, that can be used for predicting the nonlinear stress–strain behavior of materials undergoing large deformations. The model was proposed by Ronald Rivlin in 1948 using invariants, though Mooney had already described a version in stretch form in 1940, and Wall had noted the equivalence in shear with the Hooke model in 1942.

In continuum mechanics, a Mooney–Rivlin solid is a hyperelastic material model where the strain energy density function is a linear combination of two invariants of the left Cauchy–Green deformation tensor . The model was proposed by Melvin Mooney in 1940 and expressed in terms of invariants by Ronald Rivlin in 1948.

The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 by James R. Rice, who showed that an energetic contour path integral was independent of the path around a crack.

A strain energy density function or stored energy density function is a scalar-valued function that relates the strain energy density of a material to the deformation gradient.

<span class="mw-page-title-main">Yield surface</span>

A yield surface is a five-dimensional surface in the six-dimensional space of stresses. The yield surface is usually convex and the state of stress of inside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its yield point and the material is said to have become plastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves. This is because stress states that lie outside the yield surface are non-permissible in rate-independent plasticity, though not in some models of viscoplasticity.

<span class="mw-page-title-main">Viscoplasticity</span> Theory in continuum mechanics

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.

<span class="mw-page-title-main">Willam–Warnke yield criterion</span>

The Willam–Warnke yield criterion is a function that is used to predict when failure will occur in concrete and other cohesive-frictional materials such as rock, soil, and ceramics. This yield criterion has the functional form

Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure (fracture) or ductile failure (yield). Depending on the conditions most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile.

In solid mechanics, the Johnson–Holmquist damage model is used to model the mechanical behavior of damaged brittle materials, such as ceramics, rocks, and concrete, over a range of strain rates. Such materials usually have high compressive strength but low tensile strength and tend to exhibit progressive damage under load due to the growth of microfractures.

<span class="mw-page-title-main">Plate theory</span> Mathematical model of the stresses within flat plates under loading

In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat plates that draw on the theory of beams. Plates are defined as plane structural elements with a small thickness compared to the planar dimensions. The typical thickness to width ratio of a plate structure is less than 0.1. A plate theory takes advantage of this disparity in length scale to reduce the full three-dimensional solid mechanics problem to a two-dimensional problem. The aim of plate theory is to calculate the deformation and stresses in a plate subjected to loads.

In continuum mechanics, an Arruda–Boyce model is a hyperelastic constitutive model used to describe the mechanical behavior of rubber and other polymeric substances. This model is based on the statistical mechanics of a material with a cubic representative volume element containing eight chains along the diagonal directions. The material is assumed to be incompressible. The model is named after Ellen Arruda and Mary Cunningham Boyce, who published it in 1993.

<span class="mw-page-title-main">Rock mass plasticity</span>

Plasticity theory for rocks is concerned with the response of rocks to loads beyond the elastic limit. Historically, conventional wisdom has it that rock is brittle and fails by fracture while plasticity is identified with ductile materials. In field scale rock masses, structural discontinuities exist in the rock indicating that failure has taken place. Since the rock has not fallen apart, contrary to expectation of brittle behavior, clearly elasticity theory is not the last word.

<span class="mw-page-title-main">Flow plasticity theory</span>

Flow plasticity is a solid mechanics theory that is used to describe the plastic behavior of materials. Flow plasticity theories are characterized by the assumption that a flow rule exists that can be used to determine the amount of plastic deformation in the material.

<span class="mw-page-title-main">Lode coordinates</span>

Lode coordinates or Haigh–Westergaard coordinates. are a set of tensor invariants that span the space of real, symmetric, second-order, 3-dimensional tensors and are isomorphic with respect to principal stress space. This right-handed orthogonal coordinate system is named in honor of the German scientist Dr. Walter Lode because of his seminal paper written in 1926 describing the effect of the middle principal stress on metal plasticity. Other examples of sets of tensor invariants are the set of principal stresses or the set of kinematic invariants . The Lode coordinate system can be described as a cylindrical coordinate system within principal stress space with a coincident origin and the z-axis parallel to the vector .

References

  1. Andrianopoulos, N.P., Atkins, A.G., Experimental Determination of the Failure Parameters ΤD,0 and ΤV,0 in Mild Steels According to the T-criterion, ECF9 Reliability and Structural Integrity of Advanced Materials, Vol. III, 1992.
  2. Andrianopoulos, N.P., Metalforming Limit Diagrams According to the T-criterion, Journal of Materials Processing Technology 39, 1993.