Taleb distribution

Last updated

Taleb and Holy Grail Distributions Taleb and Holy Grail Distributions.png
Taleb and Holy Grail Distributions

In economics and finance, a Taleb distribution is the statistical profile of an investment which normally provides a payoff of small positive returns, while carrying a small but significant risk of catastrophic losses. The term was coined by journalist Martin Wolf and economist John Kay to describe investments with a "high probability of a modest gain and a low probability of huge losses in any period." [1]

Contents

The concept is named after Nassim Nicholas Taleb, based on ideas outlined in his book Fooled by Randomness .

According to Taleb in Silent Risk, the term should be called "payoff" to reflect the importance of the payoff function of the underlying probability distribution, rather than the distribution itself. [2] The term is meant to refer to an investment returns profile in which there is a high probability of a small gain, and a small probability of a very large loss, which more than outweighs the gains. In these situations the expected value is very much less than zero, but this fact is camouflaged by the appearance of low risk and steady returns. It is a combination of kurtosis risk and skewness risk: overall returns are dominated by extreme events (kurtosis), which are to the downside (skew). Such kind of distributions have been studied in economic time series related to business cycles. [3]

More detailed and formal discussion of the bets on small probability events is in the academic essay by Taleb, called "Why Did the Crisis of 2008 Happen?" and in the 2004 paper in the Journal of Behavioral Finance called "Why Do We Prefer Asymmetric Payoffs?" in which he writes "agents risking other people’s capital would have the incentive to camouflage the properties by showing a steady income. Intuitively, hedge funds are paid on an annual basis while disasters happen every four or five years, for example. The fund manager does not repay his incentive fee." [4] [5]

Criticism of trading strategies

Pursuing a trading strategy with a Taleb distribution yields a high probability of steady returns for a time, but with a risk of ruin that approaches eventual certainty over time. This is done consciously by some as a risky trading strategy, while some critics argue that it is done either unconsciously by some, unaware of the hazards ("innocent fraud"), or consciously by others, particularly in hedge funds.

Risky strategy

If done consciously, with one's own capital or openly disclosed to investors, this is a risky strategy, but appeals to some: one will want to exit the trade before the rare event happens. This occurs for instance in a speculative bubble, where one purchases an asset in the expectation that it will likely go up, but may plummet, and hopes to sell the asset before the bubble bursts.

This has also been referred to as "picking up pennies in front of a steamroller". [6]

"Innocent fraud"

John Kay has likened securities trading to bad driving, as both are characterized by Taleb distributions. [7] Drivers can make many small gains in time by taking risks such as overtaking on the inside and tailgating, however, they are then at risk of experiencing a very large loss in the form of a serious traffic accident. Kay has described Taleb Distributions as the basis of the carry trade and has claimed that along with mark-to-market accounting and other practices, constitute part of what John Kenneth Galbraith has called "innocent fraud". [8]

Moral hazard

Some critics of the hedge fund industry claim that the compensation structure generates high fees for investment strategies that follow a Taleb distribution, creating moral hazard. [9] In such a scenario, the fund can claim high asset management and performance fees until they suddenly "blow up", losing the investor significant sums of money and wiping out all the gains to the investor generated in previous periods; however, the fund manager keeps all fees earned prior to the losses being incurred – and ends up enriching himself in the long run because he does not pay for his losses.

Risks

Taleb distributions pose several fundamental problems, all possibly leading to risk being overlooked:

presence of extreme adverse events
The very presence or possibility of adverse events may pose a problem per se, which is ignored by only looking at the average case – a decision may be good in expectation (in the aggregate, in the long term), but a single rare event may ruin the investor.
unobserved events
This is Taleb's central contention, which he calls black swans – because extreme events are rare, they have often not been observed yet, and thus are not included in scenario analysis or stress testing.
hard-to-compute expectation
A subtler issue is that expectation is very sensitive to assumptions about probability: a trade with a $1 gain 99.9% of the time and a $500 loss 0.1% of the time has positive expected value; while if the $500 loss occurs 0.2% of the time it has approximately 0 expected value; and if the $500 loss occurs 0.3% of the time it has negative expected value. This is exacerbated by the difficulty of estimating the probability of rare events (in this example one would need to observe thousands of trials to estimate the probability with confidence), and by the use of financial leverage: mistaking a small loss for a small gain and magnifying by leverage yields a hidden large loss.

More formally, while the risks for a known distribution can be calculated, in practice one does not know the distribution: one is operating under uncertainty, in economics called Knightian uncertainty.

Mitigants

A number of mitigants have been proposed, by Taleb and others.[ citation needed ] These include:

not exposing oneself to large losses using the barbell strategy
For instance, only buying options (so one can at most lose the premium), not selling them. Many funds have started offering "tail protection" such as the one advocated by Taleb. [10]
performing sensitivity analysis on assumptions
This does not eliminate the risk, but identifies which assumptions are key to conclusions, and thus meriting close scrutiny.
scenario analysis and stress testing
Widely used in industry, they do not include unforeseen events but emphasize various possibilities and what one stands to lose, so one is not blinded by absence of losses thus far.
using non-probabilistic decision techniques
While most classical decision theory is based on probabilistic techniques of expected value or expected utility, alternatives exist which do not require assumptions about the probabilities of various outcomes, and are thus robust. These include minimax, minimax regret, and info-gap decision theory.
altering pay structure to reduce moral hazard
For workers in the financial industry whose strategies follow a Taleb distribution, linking success to long-term (not cash) rewards, which can be withdrawn in the event of intervening failure. For example, paying banks staff in long-term stock options in their bank rather than in cash bonuses.
adding to asset allocation a strategy with a holy grail distribution of returns
Adding a complementary strategy with a performance pattern that helps reduce the impact of market performance shocks (holy grail distribution) [11]

See also

Related Research Articles

Financial economics is the branch of economics characterized by a "concentration on monetary activities", in which "money of one type or another is likely to appear on both sides of a trade". Its concern is thus the interrelation of financial variables, such as share prices, interest rates and exchange rates, as opposed to those concerning the real economy. It has two main areas of focus: asset pricing and corporate finance; the first being the perspective of providers of capital, i.e. investors, and the second of users of capital. It thus provides the theoretical underpinning for much of finance.

The Black–Scholes or Black–Scholes–Merton model is a mathematical model for the dynamics of a financial market containing derivative investment instruments. From the parabolic partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price given the risk of the security and its expected return. The equation and model are named after economists Fischer Black and Myron Scholes; Robert C. Merton, who first wrote an academic paper on the subject, is sometimes also credited.

<span class="mw-page-title-main">Value at risk</span> Estimated potential loss for an investment under a given set of conditions

Value at risk (VaR) is a measure of the risk of loss for investments. It estimates how much a set of investments might lose, given normal market conditions, in a set time period such as a day. VaR is typically used by firms and regulators in the financial industry to gauge the amount of assets needed to cover possible losses.

Market risk is the risk of losses in positions arising from movements in market variables like prices and volatility. There is no unique classification as each classification may refer to different aspects of market risk. Nevertheless, the most commonly used types of market risk are:

In finance, the Sharpe ratio measures the performance of an investment such as a security or portfolio compared to a risk-free asset, after adjusting for its risk. It is defined as the difference between the returns of the investment and the risk-free return, divided by the standard deviation of the investment returns. It represents the additional amount of return that an investor receives per unit of increase in risk.

<span class="mw-page-title-main">Nassim Nicholas Taleb</span> Lebanese-American author (born 1960)

Nassim Nicholas Taleb is a Lebanese-American essayist, mathematical statistician, former option trader, risk analyst, and aphorist whose work concerns problems of randomness, probability, and uncertainty. The Sunday Times called his 2007 book The Black Swan one of the 12 most influential books since World War II.

In finance, statistical arbitrage is a class of short-term financial trading strategies that employ mean reversion models involving broadly diversified portfolios of securities held for short periods of time. These strategies are supported by substantial mathematical, computational, and trading platforms.

Risk arbitrage, also known as merger arbitrage, is an investment strategy that speculates on the successful completion of mergers and acquisitions. An investor that employs this strategy is known as an arbitrageur. Risk arbitrage is a type of event-driven investing in that it attempts to exploit pricing inefficiencies caused by a corporate event.

A fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed. Different research communities favor one or the other largely for historical reasons, and may have differences in the precise definition of either.

In statistics and decision theory, kurtosis risk is the risk that results when a statistical model assumes the normal distribution, but is applied to observations that have a tendency to occasionally be much farther from the average than is expected for a normal distribution.

Skewness risk in financial modeling is the risk that results when observations are not spread symmetrically around an average value, but instead have a skewed distribution. As a result, the mean and the median can be different. Skewness risk can arise in any quantitative model that assumes a symmetric distribution but is applied to skewed data.

<span class="mw-page-title-main">Black swan theory</span> Theory of response to surprise events

The black swan theory or theory of black swan events is a metaphor that describes an event that comes as a surprise, has a major effect, and is often inappropriately rationalized after the fact with the benefit of hindsight. The term is based on an ancient saying that presumed black swans did not exist – a saying that became reinterpreted to teach a different lesson after they were discovered in Australia.

Post-Modern Portfolio Theory (PMPT) is an extension of the traditional Modern Portfolio Theory (MPT), an application of mean-variance analysis (MVA). Both theories propose how rational investors can use diversification to optimize their portfolios.

In finance, model risk is the risk of loss resulting from using insufficiently accurate models to make decisions, originally and frequently in the context of valuing financial securities. However, model risk is more and more prevalent in activities other than financial securities valuation, such as assigning consumer credit scores, real-time probability prediction of fraudulent credit card transactions, and computing the probability of air flight passenger being a terrorist. Rebonato in 2002 defines model risk as "the risk of occurrence of a significant difference between the mark-to-model value of a complex and/or illiquid instrument, and the price at which the same instrument is revealed to have traded in the market".

Tail risk, sometimes called "fat tail risk," is the financial risk of an asset or portfolio of assets moving more than three standard deviations from its current price, above the risk of a normal distribution. Tail risks include low-probability events arising at both ends of a normal distribution curve, also known as tail events. However, as investors are generally more concerned with unexpected losses rather than gains, a debate about tail risk is focused on the left tail. Prudent asset managers are typically cautious with the tail involving losses which could damage or ruin portfolios, and not the beneficial tail of outsized gains.

Empirica Capital LLC was a hedge fund founded in 1999 by Nassim Nicholas Taleb in partnership with Mark Spitznagel, that used Taleb's black swan strategy. The firm closed in 2005 as Taleb took time off for health reasons.

Convergence trade is a trading strategy consisting of two positions: buying one asset forward—i.e., for delivery in future —and selling a similar asset forward for a higher price, in the expectation that by the time the assets must be delivered, the prices will have become closer to equal, and thus one profits by the amount of convergence.

<span class="mw-page-title-main">Mathematical finance</span> Application of mathematical and statistical methods in finance

Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling of financial markets.

The Lindy effect is a theorized phenomenon by which the future life expectancy of some non-perishable things, like a technology or an idea, is proportional to their current age. Thus, the Lindy effect proposes the longer a period something has survived to exist or be used in the present, the longer its remaining life expectancy. Longevity implies a resistance to change, obsolescence or competition and greater odds of continued existence into the future. Where the Lindy effect applies, mortality rate decreases with time. Mathematically, the Lindy effect corresponds to lifetimes following a Pareto probability distribution.

<span class="mw-page-title-main">Holy grail distribution</span> Probability distribution with a positive mean and a right fat tail

In economics and finance, a holy grail distribution is a probability distribution with positive mean and right fat tail — a returns profile of a hypothetical investment vehicle that produces small returns centered on zero and occasionally exhibits outsized positive returns.

References

  1. Martin Wolf (18 March 2008). "Why today's hedge fund industry may not survive" . Retrieved 25 March 2017.
  2. Nassim Taleb (2015). "Silent Risk Section 16.1 Payoff Skewness and Lack of Skin-in-the-Game". p. 295. Retrieved 25 March 2017.
  3. Orlando, Giuseppe; Zimatore, Giovanna (August 2020). "Business cycle modeling between financial crises and black swans: Ornstein–Uhlenbeck stochastic process vs Kaldor deterministic chaotic model". Chaos: An Interdisciplinary Journal of Nonlinear Science. 30 (8): 083129. Bibcode:2020Chaos..30h3129O. doi: 10.1063/5.0015916 . PMID   32872798.
  4. Nicholas Taleb, Nassim (2004-03-01). "Bleed or Blowup? Why Do We Prefer Asymmetric Payoffs?". The Journal of Behavioral Finance. 5: 2–7. doi:10.1207/s15427579jpfm0501_1. S2CID   17003813.
  5. "Draft version of "Bleed or Blowup?" paper" (PDF). fooledbyrandomness.com. Retrieved 2018-05-23.
  6. Taleb, p. 19
  7. John Kay "A strategy for hedge funds and dangerous drivers", Financial Times, 16 January 2003.
  8. John Kay "Banks got burned by their own ‘innocent fraud’", Financial Times, 15 October 2008.
  9. Are hedge funds a scam? Naked Capitalism/Financial Times, March 2008.
  10. Farrell, Maureen (June 27, 2011). "Protect Your Tail". Forbes. Retrieved April 7, 2019.
  11. Capital, Carmot (2014-09-30). "Holy Grail Distribution". Seeking Alpha. Retrieved 2019-04-07.