In mathematics, a Tate vector space is a vector space obtained from finite-dimensional vector spaces in a way that makes it possible to extend concepts such as dimension and determinant to an infinite-dimensional situation. Tate spaces were introduced by AlexanderBeilinson , Boris Feigin ,and Barry Mazur ( 1991 ), who named them after John Tate.
A typical example of a Tate vector space over a field k are the Laurent power series
It has two characteristic features:
Tate modules were introduced by Drinfeld (2006) to serve as a notion of infinite-dimensional vector bundles. For any ring R, Drinfeld defined elementary Tate modules to be topological R-modules of the form
where P and Q are projective R-modules (of possibly infinite rank) and * denotes the dual.
For a field, Tate vector spaces in this sense are equivalent to locally linearly compact vector spaces, a concept going back to Lefschetz. These are characterized by the property that they have a base of the topology consisting of commensurable sub-vector spaces.
Tate objects can be defined in the context of any exact category C. [1] Briefly, an exact category is way to axiomatize certain features of short exact sequences. For example, the category of finite-dimensional k-vector spaces, or the category of finitely generated projective R-modules, for some ring R, is an exact category, with its usual notion of short exact sequences.
The extension of the above example to a more general situation is based on the following observation: there is an exact sequence
whose outer terms are an inverse limit and a direct limit, respectively, of finite-dimensional k-vector spaces
In general, for an exact category C, there is the category Pro(C) of pro-objects and the category Ind(C) of ind-objects. This construction can be iterated and yields an exact category Ind(Pro(C)). The category of elementary Tate objects
is defined to be the smallest subcategory of those Ind-Pro objects V such that there is a short exact sequence
where L is a pro-object and L' is an ind-object. It can be shown that this condition on V is equivalent to that requiring for an ind-presentation
the quotients are in C (as opposed to Pro(C)).
The category Tate(C) of Tate objects is defined to be the closure under retracts (idempotent completion) of elementary Tate objects.
Braunling, Groechenig & Wolfson (2016) showed that Tate objects (for C the category of finitely generated projective R-modules, and subject to the condition that the indexing families of the Ind-Pro objects are countable) are equivalent to countably generated Tate R-modules in the sense of Drinfeld mentioned above.
A Tate Lie algebra is a Tate vector space with an additional Lie algebra structure. An example of a Tate Lie algebra is the Lie algebra of formal power series over a finite-dimensional Lie algebra.
The category of Tate objects is an exact category, as well, as can be shown. The construction can therefore be iterated, which is relevant to applications in higher-dimensional class field theory, [2] which studies higher local fields such as
Kapranov (2001) has introduced the so-called determinant torsor for Tate vector spaces, which extends the usual linear algebra notions of determinants and traces etc. to automorphisms f of Tate vector spaces V. The essential idea is that, even though a lattice L in V is infinite-dimensional, the lattices L and f(L) are commensurable, so that the ? in the finite-dimensional sense can be uniquely extended to all lattices, provided that the determinant of one lattice is fixed. Clausen (2009) has applied this torsor to simultaneously prove the Riemann–Roch theorem, Weil reciprocity and the sum of residues formula. The latter formula was already proved by Tate (1968) by similar means.
In mathematics, a set B of vectors in a vector space V is called a basis if every element of V may be written in a unique way as a finite linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called basis vectors.
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties.
In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.
In mathematics, especially representation theory, a quiver is another name for a multidigraph; that is, a directed graph where loops and multiple arrows between two vertices are allowed. Quivers are commonly used in representation theory: a representation V of a quiver assigns a vector space V(x) to each vertex x of the quiver and a linear map V(a) to each arrow a.
In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules over a ring, keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below.
In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.
In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.
In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.
In mathematics, an operad is a structure that consists of abstract operations, each one having a fixed finite number of inputs (arguments) and one output, as well as a specification of how to compose these operations. Given an operad , one defines an algebra over to be a set together with concrete operations on this set which behave just like the abstract operations of . For instance, there is a Lie operad such that the algebras over are precisely the Lie algebras; in a sense abstractly encodes the operations that are common to all Lie algebras. An operad is to its algebras as a group is to its group representations.
In conformal field theory and representation theory, a W-algebra is an associative algebra that generalizes the Virasoro algebra. W-algebras were introduced by Alexander Zamolodchikov, and the name "W-algebra" comes from the fact that Zamolodchikov used the letter W for one of the elements of one of his examples.
In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property.
In mathematics, a Tannakian category is a particular kind of monoidal category C, equipped with some extra structure relative to a given field K. The role of such categories C is to generalise the category of linear representations of an algebraic group G defined over K. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory.
In mathematics a Yetter–Drinfeld category is a special type of braided monoidal category. It consists of modules over a Hopf algebra which satisfy some additional axioms.
In category theory, a branch of mathematics, the center is a variant of the notion of the center of a monoid, group, or ring to a category.
In mathematics, the field with one element is a suggestive name for an object that should behave similarly to a finite field with a single element, if such a field could exist. This object is denoted F1, or, in a French–English pun, Fun. The name "field with one element" and the notation F1 are only suggestive, as there is no field with one element in classical abstract algebra. Instead, F1 refers to the idea that there should be a way to replace sets and operations, the traditional building blocks for abstract algebra, with other, more flexible objects. Many theories of F1 have been proposed, but it is not clear which, if any, of them give F1 all the desired properties. While there is still no field with a single element in these theories, there is a field-like object whose characteristic is one.
In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of simple objects, and simple objects are those that do not contain non-trivial proper sub-objects. The precise definitions of these words depends on the context.
In algebra, a perfect complex of modules over a commutative ring A is an object in the derived category of A-modules that is quasi-isomorphic to a bounded complex of finite projective A-modules. A perfect module is a module that is perfect when it is viewed as a complex concentrated at degree zero. For example, if A is Noetherian, a module over A is perfect if and only if it is finitely generated and of finite projective dimension.
In mathematics, compact objects, also referred to as finitely presented objects, or objects of finite presentation, are objects in a category satisfying a certain finiteness condition.