Telechrome

Last updated

Telechrome was the first all-electronic single-tube color television system. It was invented by well-known Scottish television engineer, John Logie Baird, who had previously made the first public television broadcast, as well as the first color broadcast using a pre-Telechrome system.

Contents

Telechrome used two electron guns aimed at either side of a thin, semi-transparent mica sheet. One of the sides was covered in cyan phosphor and the other red-orange, producing a limited color gamut, but well suited to displaying skin tones. With minor modifications, the system could also be used to produce 3D images. Telechrome was selected as the basis for a UK-wide television standard by a committee in 1944, but the difficult task of converting the two-color system to three-color RGB was still under way when Baird died in 1946.

The introduction of the shadow mask design by RCA produced a workable solution for color television, albeit one with considerably less image brightness. Interest in alternative systems like the Telechrome or Geer tube faded by the late 1950s. The only alternatives to see widespread use were General Electric's slot-mask, and Sony's Trinitron, both were modifications of the RCA concept. All CRT-based methods have since been almost completely replaced by LCD television, starting in the 1990s.

Background

Mechanical and hybrid color

Baird performed one of the earliest public demonstrations of color television system on 3 July 1928 using an all-mechanical system with three Nipkow disk scanners synchronized with a single disk on the receiving end and three colored lights that were turned on and off in synchronicity with the broadcaster. The same basic system was used on 4 February 1938 to create the first color broadcast transmissions from The Crystal Palace to the Dominion Theatre in London. Baird was not the only one to experiment with mechanical color television, and a number of similar devices were demonstrated throughout this period, but Baird is recorded as the first to show a real over-the-air transmission in a public demonstration. [1]

In 1940 he introduced a much better solution using a system known today as hybrid color. This used a traditional black and white CRT with a rotating colored filter in front. Three frames, sent one after the other in a system known as sequential scan, were displayed on the CRT while the colored wheel was spun in synchronicity. This design was physically very long, leading to deep receiver chassis, but later versions folded the optical path using mirrors to produce a somewhat more practical system. Again, Baird was not the only one to produce such a system, with CBS displaying a very similar system at almost the same time. However, Baird was not happy with the design later stated that a fully electronic device would be better. [1]

Fully electronic systems

This live image of Paddy Naismith was used to demonstrate Baird's first all-electronic color television system, which used two projection CRTs. The two-color image would be similar to the basic telechrome system. Note that the green in Paddy's blouse reproduces very poorly as a dark, grayish cyan. Baird's two-color method can't reproduce true greens or blues. Baird first color photo.jpg
This live image of Paddy Naismith was used to demonstrate Baird's first all-electronic color television system, which used two projection CRTs. The two-color image would be similar to the basic telechrome system. Note that the green in Paddy's blouse reproduces very poorly as a dark, grayish cyan. Baird's two-color method can't reproduce true greens or blues.

The basic problem facing designers of color televisions was this: sending each frame of the moving image meant sending three complete images, one each for red, green and blue. Sequential systems, like Baird's earlier efforts, sent the three images one after another. In order for motion to appear smooth, images must change at least 16 times a second. To reduce flicker, over 40 frames per second (fps) is mandatory. For this reason, very high refresh (field) rates were necessary. CBS' system refreshed at 144 fps, 48 fps for each individual color. [2] (Peter Carl Goldmark's CBS team tried several field rates. Within the 6 MHz allowable channel bandwidth, the most acceptable rate was 144 fps. This rate made pictures incompatible with existing systems working at 50 or 60 Hz. [3]

A system sending all three signals at the same time at a conventional refresh rate would be greatly preferable. Transmitting such a signal could be accomplished by using three camera tubes, each with a color filter in front of them, using mirrors or prisms to aim at the same scene through a single lens. Each signal would then be separately broadcast using three conventional TV channels, and using the luminance concept, one of those could be received on a conventional black and white set. This would use a considerable amount of bandwidth, but this was a small cost in the era of only a few television channels. [3]

The problem, however, was how to combine the three separate signals back into a single display. The system used in the cameras, with three separate tubes combined together optically, was not practical due to the cost of a receiver set with three CRTs as well as the unwieldily chassis needed to contain them. One such example was the RCA Triniscope, which produced useful images but was extremely complex, required constant adjustment, and was the size of a contemporary refrigerator to produce a 10 inches (250 mm) display. A number of experiments were carried out using more conventional tubes and then filtering them, but the low output of the CRTs produced very dim images that were dismissed as impractical. [4]

Baird had previously worked on a high-intensity CRT system known as the "teapot tube" that saw some use in the UK and US as a projection system in theatres. These were normally built with two such CRTs side-by-side, with one acting as a hot backup in case the primary tube failed. In 1941 Baird converted a teapot projector to produce a two-color image by placing filters in front of the two tubes and projecting them onto a smaller screen to improve the effective intensity. He first showed this in 1941, and in 1942 the BBC described the resulting color image as "entirely natural". The image, of Paddy Naismith, is the first known image of color television to be published. [1]

A projection system with two CRTs was better than three, but still not practical for a home receiver. Baird continued to consider other solutions. One used a single conventional CRT with the two images displayed in a single frame, with the top half of the image containing the image for one color and the bottom the other. Lens systems focused on the display were positioned to see only the top or bottom image, passed them through filters, and then recombined them on a screen. There were drawings showing a similar system with three frames. [5] Like many similar efforts from other experimenters, Baird abandoned this approach. [6]

Two-gun Telechrome

Still searching for a single-tube solution that was bright enough for direct viewing, in 1942 Baird hit upon the Telechrome concept. His solution was essentially to combine two tubes into one large spherical enclosure. In the center of the enclosure was a translucent mica sheet forming the display, covered on one side with cyan phosphor, the other with an orange-red color, producing a limited but useful color gamut. Two electron guns arranged on either side of the screen fired at it, producing the two colors. The image was viewed from one side, seeing one of the colors directly and the other being transmitted through the screen from the other side. [7] This was the first single-tube color television system. [8]

The earliest test models used screens only a few inches across and had the guns arranged almost at right angles to it, making for a very large tube. [8] Later models were built inside very large Hackbridge-Hewittic (H-H) vacuum tubes, which the company originally designed for use as high-power rectifiers in power supplies. [9] Arthur Johnson, a glass blower who had previously worked for both Baird and H-H, produced the new models. These had screens ten inches across, [10] comparable to monochrome screens of the era. The guns fired upward at about a 45 degree angle, allowing them to sit below the display in the chassis. As was the case in the teapot tube, the necks were very long. [7] [9]

Baird also demonstrated the use of the two-gun tube as the basis for stereoscopic 3D television. [7] Baird's image pickup was a flying-spot scanner. This scanner produced alternating blue-green and orange-red scanning beams. Beam separation provided the necessary parallax for anaglyph stereo pictures. [11] [12] [13] Viewers wore colored glasses. The glasses steered the images: One eye saw only the orange-red image. The other eye saw only the blue-green image. This stereoscopic viewing method is identical to the process in Anaglyph 3D movies. [14]

Three-gun Telechrome

The colour gamut of the two-gun system was limited, unable to produce strong greens or blues. To produce a wider gamut, a system using the three primary colours would be needed. For two colours one can aim at either side of the screen, but for three there is no "third side" that can be used. Baird's solution used a variation on his two-colour system, using one side of the screen as-is, and patterning the other side with a series of horizontal triangular ridges. One gun, normally shown as red in most diagrams, fired onto the flat side of the screen, as in the two-colour model. The other two guns were arranged above and below the ridged side of the screen, so they fired onto one side or the other of the ridges. These were coloured green and blue. When all three guns fired, the image would be combined into a single display. [7] [9]

The problem with this approach was that it was very difficult to focus the electron guns on the ridges without the signal bleeding over to the ridges on either side. This problem was compounded by the changing angle between the gun and the ridges as the signal progressed down the screen. Similar designs were attempted by a number of researchers, the best known was the Geer tube that used pyramid-shaped patterns with three guns arranged around the back. None of these systems could ever be made to work reliably, with focusing and alignment being continual problems. [15]

There is no documentary evidence that a successful version of the three-gun Telechrome tube was ever built, although images of Baird holding what is claimed to be a prototype are widely duplicated. The image shows a three-neck tube, but the third neck is the original Hewittic port, now used to hold the internal screen. Burns published a typical photo of the two-gun, three-neck tube. [16]

Baird also described a 3D system using the ridged tube that eliminated the need for glasses. In this case, the tube was rotated so the peaks ran vertically instead of horizontally and the red gun was removed. The guns formerly used for green and blue were now used for left and right images. [6] The basic concept is identical to the lenticular printing system used in magazines and other printed materials to produce 3D images. [7] However, there is no evidence such a system was ever trialled.

Public demonstrations

Baird gave a number of demonstrations of the two-color system throughout the war, and held a full press demonstration on 12 August 1944. These were generally reported in glowing terms, notably an October 1944 report in Electronics that described the images as bright and the 3D effect "excellent". [14]

Not all reports were so positive. One concluded that Baird had "done a real service in demonstrating the value of colour television", but suggested that the two-color system would ultimately have to be replaced with a three-color system. [14] They went on to note:

Apart from the coated mica screen, we do not think any new invention has been demonstrated, and we consider that development on a scale far beyond the capabilities of Mr. Baird's present organisation is necessary for successful results. [14]

They also dismissed the 3D work, which Baird had apparently ended by this point, as a "stunt". [14]

Telechrome and the Hankey Committee

In 1943, with the war clearly turning in the Allies favor, Winston Churchill formed a series of committees to consider post-war redevelopment. Among these were plans to re-open the Alexandra Palace broadcaster, and more widely, nationwide television. To consider this, in September 1943 Churchill formed the Television Committee, better known to history as the Hankey Committee. [17]

The Committee met numerous times during the next year, and asked Baird to prepare a number of papers on the topic of post-war broadcasting. Among his suggestions, he stated that the BBC's monopoly should be ended and independent broadcasters should be licensed, which was delivered along with a request to start such a service. The Committee agreed with this position. He also described the Telechrome system, and this appears to have had a great impact on the Committee.

In his comments to the Hankey Television Committee, Baird suggested two-color, 1,000-line pictures. Such pictures would have required considerable radio bandwidth. The pictures would be incompatible with the pre-war, EMI / BBC, 405-line system. Before the Hankey Committee, Baird also considered the possibility of compatible color systems. [18] In December 1944, the committee delivered its preliminary report. The report called for a system that had "on the order of 1,000 lines" of resolution. The system would optionally be capable of color and 3D displays. The system also be able to run beside the pre-war 405-line system by Marconi and EMI. [17]

Baird was called to a 29 February 1944 meeting of Cable and Wireless (C&W) to discuss the formation of a color television studio. After some discussion, C&W chairman Edward Wilshaw noted that there was an agreement in place that precluded Marconi from entering the market until 1949, which would place them at a significant disadvantage compared to other companies. He suggested that the matter be deferred, as any immediate changes would produce friction between C&W, the General Post Office and the BBC. The matter was dropped, and it would not be until the Television Act 1954 that the possibility was again considered. [19]

Telechrome ends

From 1944 Baird was suffering from increasingly poor health, and late that year he suffered an attack of fever that left him almost invalid. Nevertheless, he formed a new company, John Logie Baird Ltd., with offices and labs in a downtown London house. Baird visited the lab less and less frequently over time, and his wife noticed why in a November 1945 visit when he was seen to have to stop and pant after climbing every stair of the building's four stories. [20] He caught a cold over Christmas 1945, and suffered a stroke in February 1946. He was ordered bedridden but refused to stay there, and continued to deteriorate until his death on 14 June. [21]

Telechrome died with Baird, but the company by this time had introduced its first truly successful product. This combined a 27 inches (690 mm) black and white television, a radio receiver and a record-changing record player in a single large cabinet. The company was purchased in 1948 and switched hands several times, eventually being used as a brand name by Thorn Electrical Industries for a time. [21]

Telechrome and Trinitron

Many years later, former Baird employee Edward Anderson was quoted as saying that they "had the equivalent of the Sony Trinitron tube on the drawing board". [22] This has been used by a number of non-technical authors to suggest that the Trinitron is in some way technically related to the Telechrome in spite of the two systems having nothing in common. [23] [24]

Patents

Related Research Articles

<span class="mw-page-title-main">Cathode-ray tube</span> Vacuum tube manipulated to display images on a phosphorescent screen

A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms (oscilloscope), pictures, radar targets, or other phenomena. A CRT on a television set is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer. The term cathode ray was used to describe electron beams when they were first discovered, before it was understood that what was emitted from the cathode was a beam of electrons.

<span class="mw-page-title-main">RGB color model</span> Color model based on red, green and blue

The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

<span class="mw-page-title-main">Television</span> Telecommunication medium for transmitting and receiving moving images

Television (TV) is a telecommunication medium for transmitting moving images and sound. The term can refer to a television set, or the medium of television transmission. Television is a mass medium for advertising, entertainment, news, and sports.

<span class="mw-page-title-main">John Logie Baird</span> Scottish inventor, known for first demonstrating television

John Logie Baird was a Scottish inventor, electrical engineer, and innovator who demonstrated the world's first live working television system on 26 January 1926. He went on to invent the first publicly demonstrated colour television system and the first viable purely electronic colour television picture tube.

<span class="mw-page-title-main">Color television</span> Television transmission technology

Color television or colour television is a television transmission technology that includes color information for the picture, so the video image can be displayed in color on the television set. It improves on the monochrome or black-and-white television technology, which displays the image in shades of gray (grayscale). Television broadcasting stations and networks in most parts of the world upgraded from black-and-white to color transmission between the 1960s and the 1980s. The invention of color television standards was an important part of the history and technology of television.

<span class="mw-page-title-main">Aperture grille</span>

An aperture grille is one of two major technologies used to manufacture color cathode-ray tube (CRT) televisions and computer displays; the other is the shadow mask.

<span class="mw-page-title-main">Shadow mask</span> Metal sheet with hundreds of thousands of holes, used in CRTs to correctly align colors

The shadow mask is one of the two technologies used in the manufacture of cathode-ray tube (CRT) televisions and computer monitors which produce clear, focused color images. The other approach is the aperture grille, better known by its trade name, Trinitron. All early color televisions and the majority of CRT computer monitors used shadow mask technology. Both of these technologies are largely obsolete, having been increasingly replaced since the 1990s by the liquid-crystal display (LCD).

<span class="mw-page-title-main">Trinitron</span> Series of CRT televisions and monitors manufactured by Sony from 1968 to 2008

Trinitron was Sony's brand name for its line of aperture-grille-based CRTs used in television sets and computer monitors. One of the first television systems to enter the market since the 1950s. Constant improvement in the basic technology and attention to overall quality allowed Sony to charge a premium for Trinitron devices into the 1990s.

<span class="mw-page-title-main">Television set</span> Device for viewing computers screen and shows broadcast through satellites or cables

A television set or television receiver, more commonly called the television, TV, TV set, telly, tele, or tube, is a large device that combines a tuner, display, and loudspeakers, for the purpose of viewing and hearing television broadcasts, or as a computer monitor. Introduced in the late 1920s in mechanical form, television sets became a popular consumer product after World War II in electronic form, using cathode ray tube (CRT) technology. The addition of color to broadcast television after 1953 further increased the popularity of television sets in the 1960s, and an outdoor antenna became a common feature of suburban homes. The ubiquitous television set became the display device for the first recorded media for consumer use in the 1970s, such as Betamax, VHS; these were later succeeded by DVD. It has been used as a display device since the first generation of home computers and dedicated video game consoles in the 1980s. By the early 2010s, flat-panel television incorporating liquid-crystal display (LCD) technology, especially LED-backlit LCD technology, largely replaced CRT and other display technologies. Modern flat panel TVs are typically capable of high-definition display and can also play content from a USB device. Starting in the late 2010s, most flat panel TVs began to offer 4K and 8K resolutions.

<span class="mw-page-title-main">Mechanical television</span> Television that relies on a scanning device to display images

Mechanical television or mechanical scan television is an obsolete television system that relies on a mechanical scanning device, such as a rotating disk with holes in it or a rotating mirror drum, to scan the scene and generate the video signal, and a similar mechanical device at the receiver to display the picture. This contrasts with vacuum tube electronic television technology, using electron beam scanning methods, for example in cathode ray tube (CRT) televisions. Subsequently, modern solid-state liquid-crystal displays (LCD) are now used to create and display television pictures.

<span class="mw-page-title-main">CRT projector</span> Older type of video projector that uses small, high intensity CRTs as image generating elements

A CRT projector is a video projector that uses a small, high-brightness cathode ray tube (CRT) as the image generating element. The image is then focused and enlarged onto a screen using a lens kept in front of the CRT face. The first color CRT projectors came out in the early 1950s. Most modern CRT projectors are color and have three separate CRTs, and their own lenses to achieve color images. The red, green and blue portions of the incoming video signal are processed and sent to the respective CRTs whose images are focused by their lenses to achieve the overall picture on the screen. Various designs have made it to production, including the "direct" CRT-lens design, and the Schmidt CRT, which employed a phosphor screen that illuminates a perforated spherical mirror, all within an evacuated cathode ray tube.

Cromaclear is a trademark for CRT technology used by NEC during the mid to late-90s. This adopted the slotted shadow mask and in-line electron gun pioneered by the 1966 GE Porta-Color and used by most then-current television tubes to computer monitor use. It was claimed that Cromaclear could offer the image clarity and sharpness of the Trinitron and Diamondtron aperture grille CRTs without the disadvantages e.g. expense and the horizontal damping wires.

The penetron, short for penetration tube, is a type of limited-color television used in some military applications. Unlike a conventional color television, the penetron produces a limited color gamut, typically two colors and their combination. Penetrons, and other military-only cathode ray tubes (CRTs), have been replaced by LCDs in modern designs.

<span class="mw-page-title-main">FD Trinitron/WEGA</span>

FD Trinitron/WEGA is Sony's flat version of the Trinitron picture tube. First introduced in 1998 on Sony's 32-inch and 36-inch televisions, this technology was also used in computer monitors bearing the Trinitron mark. The FD Trinitron used computer-controlled feedback systems to ensure sharp focus across a flat screen. The FD Trinitron reduces the amount of glare on the screen by reflecting much less ambient light than spherical or vertically flat CRTs. Flat screens also increase total image viewing angle and have less geometric distortion in comparison to curved screens. The FD Trinitron line featured key standard improvements over prior Trinitron designs including a finer pitch aperture grille, an electron gun with a greater focal length for corner focus, and an improved deflection yoke for color convergence.

<span class="mw-page-title-main">History of television</span> Development of television

The concept of television is the work of many individuals in the late 19th and early 20th centuries. The first practical transmissions of moving images over a radio system used mechanical rotating perforated disks to scan a scene into a time-varying signal that could be reconstructed at a receiver back into an approximation of the original image. Development of television was interrupted by the Second World War. After the end of the war, all-electronic methods of scanning and displaying images became standard. Several different standards for addition of color to transmitted images were developed with different regions using technically incompatible signal standards. Television broadcasting expanded rapidly after World War II, becoming an important mass medium for advertising, propaganda, and entertainment.

<span class="mw-page-title-main">Large-screen television technology</span> Technology rapidly developed in the late 1990s and 2000s

Large-screen television technology developed rapidly in the late 1990s and 2000s. Prior to the development of thin-screen technologies, rear-projection television was standard for larger displays, and jumbotron, a non-projection video display technology, was used at stadiums and concerts. Various thin-screen technologies are being developed, but only liquid crystal display (LCD), plasma display (PDP) and Digital Light Processing (DLP) have been publicly released. Recent technologies like organic light-emitting diode (OLED) as well as not-yet-released technologies like surface-conduction electron-emitter display (SED) or field emission display (FED) are in development to replace earlier flat-screen technologies in picture quality.

The Chromatron is a color television cathode ray tube design invented by Nobel prize-winner Ernest Lawrence and developed commercially by Paramount Pictures, Sony, Litton Industries and others. The Chromatron offered brighter images than conventional color television systems using a shadow mask, but a host of development problems kept it from being widely used in spite of years of development. Sony eventually abandoned it in favor of their famous Trinitron system using an aperture grille.

The Geer tube was an early single-tube color television cathode ray tube, developed by Willard Geer. The Geer tube used a pattern of small phosphor-covered three-sided pyramids on the inside of the CRT faceplate to mix separate red, green and blue signals from three electron guns. The Geer tube had a number of disadvantages, and was never used commercially due to the much better images generated by RCA's shadow mask system. Nevertheless, Geer's patent was awarded first, and RCA purchased an option on it in case their own developments didn't pan out.

The beam-index tube is a color television cathode ray tube (CRT) design, using phosphor stripes and active-feedback timing, rather than phosphor dots and a beam-shadowing mask as developed by RCA. Beam indexing offered much brighter pictures than shadow-mask CRTs, reducing power consumption, and as they used a single electron gun rather than three, they were easier to build and required no alignment adjustments.

<span class="mw-page-title-main">Porta-Color</span>

General Electric's Porta-Color was the first "portable" color television introduced in the United States in 1966.

References

Citations

  1. 1 2 3 Colour 1941.
  2. Abramson, Electronic Motion Pictures, 94-95.
  3. 1 2 "Early Color Television". Early Television Museum.
  4. Reitan, Ed (24 August 1997). "CBS Field Sequential Color System". Archived from the original on 5 January 2010.
  5. Burns 2000, p. 376.
  6. 1 2 Stereoscopic 1944.
  7. 1 2 3 4 5 TwoSided 1945.
  8. 1 2 Media.
  9. 1 2 3 Burns 2000, p. 378.
  10. Herbert 1996, p. 26.
  11. Herbert 1996, p. 24.
  12. Burns 2000, p. 365.
  13. Burns 2000, p. 369.
  14. 1 2 3 4 5 Burns 2000, p. 380.
  15. "Teacher's Tube". Time. 20 March 1950. Archived from the original on January 31, 2011.
  16. Burns 2000, p. 379.
  17. 1 2 Burns 2000, p. 381.
  18. Burns 2000, p. 406-7.
  19. Burns 2000, p. 383.
  20. Burns 2000, p. 386.
  21. 1 2 Burns 2000, p. 388.
  22. Waddell, Peter (11 November 1976). "Seeing by wireless". New Scientist: 344.
  23. "Baird". Journal of Economic and Social Intelligence. 1992. All modern T.V. receivers can be traced directly back to the TELECHROME of August 1944
  24. Hawes, James (2014). "Did J.L. Baird Invent the Trinitron Tube?" . Retrieved 28 February 2018.

Bibliography