Tetrahydrocoptisine

Last updated
Tetrahydrocoptisine
Stylopine.svg
(S)-tetrahydrocoptisine
Names
IUPAC name
5,7,17,19-tetraoxa-13-azahexacyclo[11.11.0.02,10.04,8.015,23.016,20]tetracosa-2,4(8),9,15(23),16(20),21-hexaene
Other names
Stylopine
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C19H17NO4/c1-2-16-19(24-10-21-16)14-8-20-4-3-12-6-17-18(23-9-22-17)7-13(12)15(20)5-11(1)14/h1-2,6-7,15H,3-5,8-10H2/t15-/m0/s1 Yes check.svgY
    Key: UXYJCYXWJGAKQY-HNNXBMFYSA-N Yes check.svgY
  • c1cc2c(c3c1C[C@H]1c4cc5c(cc4CCN1C3)OCO5)OCO2
Properties
C19H17NO4
Molar mass 323.348 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tetrahydrocoptisine (also known as stylopine) is an alkaloid isolated from Corydalis species. [1] [2]

Contents

Biosynthesis

The (S)-isomer of tetrahydrocoptisine is produced when the enzyme (S)-stylopine synthase acts on (S)-cheilanthifoline to form a second methylenedioxy ring: [2] [3]

 
 
O2
2 H2O
Tetrahydrocoptisine
 
 
 
Stylopine.svg
(S)-tetrahydrocoptisine
 

Metabolism

Tetrahydrocoptisine is converted to coptisine by an oxidation reaction catalysed by the enzyme tetrahydroberberine oxidase. [2] [4]

Stylopine.svg
tetrahydrocoptisine
+ H+
 
 
2 O2
2 H2O2
Tetrahydrocoptisine
 
 
 

Alternatively, it can be converted into protopine in two steps. The first is a methylation reaction by the enzyme (S)-tetrahydroprotoberberine N-methyltransferase using the cofactor, S-adenosyl methionine (SAM). This transfers a methyl group, giving S-adenosyl-L-homocysteine (SAH). [2] [5]

Stylopine.svg
(S)-tetrahydrocoptisine
+ SAM
 
 
 
 
Tetrahydrocoptisine
 
 
 
+ SAH
 

Then the product, (S)-cis-N-methylstylopine, is oxidised by the enzyme methyltetrahydroprotoberberine 14-monooxygenase: [2] [6]

(S)-cis-N-methylstylopine.svg
(S)-cis-N-methylstylopine
 
 
O2
H2O
Tetrahydrocoptisine
O2
H2O
 
 

References

  1. Li, W.; Huang, H.; Zhang, Y.; Fan, T.; Liu, X.; Xing, W.; Niu, X. (2013). "Anti-inflammatory effect of tetrahydrocoptisine from Corydalis impatiens is a function of possible inhibition of TNF-α, IL-6 and NO production in lipopolysaccharide-stimulated peritoneal macrophages through inhibiting NF-κB activation and MAPK pathway". European Journal of Pharmacology. 715 (1–3): 62–71. doi:10.1016/j.ejphar.2013.06.017. PMID   23810685.
  2. 1 2 3 4 5 Tian, Ya; Kong, Lingzhe; Li, Qi; Wang, Yifan; Wang, Yongmiao; An, Zhoujie; Ma, Yuwei; Tian, Lixia; Duan, Baozhong; Sun, Wei; Gao, Ranran; Chen, Shilin; Xu, Zhichao (2024). "Structural diversity, evolutionary origin, and metabolic engineering of plant specialized benzylisoquinoline alkaloids". Natural Product Reports. 41 (11): 1787–1810. doi:10.1039/D4NP00029C. PMID   39360417.
  3. Bauer W, Zenk MH (1991). "Two methylenedioxy bridge-forming cytochrome P-450 dependent enzymes are involved in (S)-stylopine biosynthesis". Phytochemistry . 30 (9): 2953–2961. Bibcode:1991PChem..30.2953B. doi:10.1016/S0031-9422(00)98230-X.
  4. "Coptisine biosynthesis". PubChem. Retrieved 2026-02-06.
  5. Rueffer M, Zumstein G, Zenk MH (1990). "Partial purification and characterization of S-adenosyl-L-methionine:(S)-tetrahydroprotoberberine cis-N-methyltransferase from suspension-cultured cells of Eschscholtzia and Corydalis" (PDF). Phytochemistry . 29 (12): 3727–3733. doi:10.1016/0031-9422(90)85321-6.
  6. Rueffer M, Zenk MH (1987). "Enzymatic formation of protopines by a microsomal cytochrome-P-450 system of Corydalis vaginans". Tetrahedron Lett. 28 (44): 5307–5310. doi:10.1016/S0040-4039(00)96715-7.