Thelohanellus kitauei

Last updated

Thelohanellus kitauei
Thelohanellus kitauei.png
Fresh myxospores of T. kitauei from a skin smear of common carp; from Zhai et al. 2016; size bar 10 μm.
Scientific classification
Kingdom:
Phylum:
Subphylum:
Class:
Order:
Family:
Genus:
Species:
T. kitauei
Binomial name
Thelohanellus kitauei

Thelohanellus kitauei is a myxozoan endoparasite identified as the agent of intestinal giant-cystic disease (IGCD) of common carp Cyprinus carpio . The species was first identified in Japan, in 1980 [1] and later formally described by Egusa & Nakajima. [2] Fan [3] subsequently reported the parasite in China, and several other reports from carp and Koi carp in China and Korea followed. [4] [5] [6] Reports referred to an intestinal infection, swelling and emaciation of fish due to blockage of the intestinal tract by giant cysts. The intestine of carp was believed to be the only infection site of T. kitauei until Zhai et al. [7] reported large cysts of T. kitauei in the skin, with morphologically similar and molecularly identical spores. T. kitauei has been recognized as the most detrimental disease of farmed carp in Asia with around 20% of farmed carp killed annually. [8] In 2014, the genome of T. kitauei was sequenced, [8] and in 2016, its life cycle was found to include the oligochaete Branchiura sowerbyi. [9] Infected oligochaete worms were first discovered in Hungary and raised concerns of the introduction of T. kitauei into European carp culture ponds, since it was believed to be endemic to Asia. However, the related disease (IGCD) has not yet been reported in Europe.

Contents

Taxonomy

Valid taxonomic name: Thelohanellus kitauei Egusa & Nakajima, 1981.

Junior synonym: Thelohanellus xinyangensis Xie, Gong, Xiao, Guo, Li et Guo, 2000.

Life cycle

The life cycle of T. kitauei involves two hosts. Branchiura sowerbyi (Oligochaeta, Naididae, Branchiurinae) is the definitive host, in which actinosporean spores of the aurantiactinomyxon type are formed and released from the intestinal tract of the worms. These actinospores then infect the intermediate host, common carp, and after parasite multiplication, myxosporean spores are formed in the carp intestine. Myxospores are then released with the faeces of the fish host or after its death, and taken up by B. sowerbyi while feeding on the sediment.

Pathology and clinical signs

The intestines of diseased carp develop large cysts containing spores of T. kitauei. The cyst size ranges from 2 cm to 3.6 cm in diameter. Histopathology indicates that T. kitauei first invades the submucosa of the host intestine and then moves into the mucosa layers where spores are formed, with spores entering the body cavity of the hosts after disruption of mucosa layers. [10] Affected fish stocks can suffer from mortalities reaching 100%. Fish die from starvation as nutrient uptake and passage of food through infected intestines is limited. Infections in the skin cause large, irregular tumour-like lesions bearing cysts with spores. These cause exfoliation of epidermis and the stratum spongiosum.

Impact

In 2010, in China, IGCD led to economic losses of approximately US$50 Million. [8]

Diagnosis

Intestinal cysts are large and easily visible to the naked eye (Fig. 2), cysts on the skin are also large. Myxospores within the cysts should match the descriptions of Egusa & Nakajima, 1981 [2] or Zhai et al. 2016. [7] They are egg-shaped balloon-like sacks, 33.4 μm by 15.0 μm in size on average. 18S rDNA sequences are available on Genbank under the accession numbers KU664644, JQ690367, HM624024, MH329616, KR872638, KU664643, GQ396677, MF536693; genome data is available under the Bioproject accession number PRJNA193083. A qPCR detection assay was developed by Seo et al., [11] but its specificity requires confirmation as closely related species show only minor 18S rDNA sequence divergence.

Treatments

Presently, there are no treatments against myxozoans in fish destined for human consumption.

Other control strategies

No other control strategies have been identified.

Research

Most research on this parasite is performed in Japan, China and Korea, where IGCD affects a large number of carp stocks. Within the EU-funded Horizon 2020 Project ParaFishControl the invertebrate host of T. kitauei was elucidated in Hungary, though this country is thought to be an IGCD-free carp culture area. Ongoing studies within this project investigate the presence of T. kitauei in environmental samples in carp culture ponds in different countries in Europe and focus on detecting a potentially different infection site in fish, as large scale screening of intestines did not reveal T. kitauei infections, even at sites where the parasite was detected in environmental samples.

Related Research Articles

<i>Toxoplasma gondii</i> Type of protozoan parasite

Toxoplasma gondii is an obligate intracellular parasitic protozoan that causes toxoplasmosis. Found worldwide, T. gondii is capable of infecting virtually all warm-blooded animals, but felids, such as domestic cats, are the only known definitive hosts in which the parasite may undergo sexual reproduction.

Myxozoa Group of marine parasites

Myxozoa is an unranked subphylum of aquatic, obligately parasitic cnidarian animals and contains the smallest animals ever known to have lived. Over 2180 species have been described and some estimates have suggested at least 30,000 undiscovered species. Many have a two-host lifecycle, involving a fish and an annelid worm or a bryozoan. The average size of a myxosporean spore usually ranges from 10 μm to 20 μm, whereas that of a malacosporean spore can be up to 2 mm. Myxozoans can live in both freshwater and marine habitats.

Myxosporea Class of cnidarians comprising microscopic parasites

Myxosporea is a class of microscopic parasites, belonging to the Myxozoa clade within Cnidaria. They have a complex life cycle which comprises vegetative forms in two hosts, an aquatic invertebrate and an ectothermic vertebrate, usually a fish. Each host releases a different type of spore. The two forms of spore are so different that until relatively recently they were treated as belonging to different classes within the Myxozoa.

<i>Clonorchis sinensis</i> Species of fluke

Clonorchis sinensis, the Chinese liver fluke, is a liver fluke belonging to the class Trematoda, phylum Platyhelminthes. It infects fish-eating mammals, including humans. In humans, it infects the common bile duct and gall bladder, feeding on bile. It was discovered by British physician James McConnell at the Medical College Hospital in Calcutta (Kolkata) in 1874. The first description was given by Thomas Spencer Cobbold, who named it Distoma sinense. The fluke passes its lifecycle in three different hosts, namely freshwater snail as first intermediate hosts, freshwater fish as second intermediate host, and mammals as definitive hosts.

<i>Balantidium coli</i> Species of single-celled organism

Balantidium coli is a parasitic species of ciliate alveolates that causes the disease balantidiasis. It is the only member of the ciliate phylum known to be pathogenic to humans.

Metagonimiasis is a disease caused by an intestinal trematode, most commonly Metagonimus yokagawai, but sometimes by M. takashii or M. miyatai. The metagonimiasis-causing flukes are one of two minute flukes called the heterophyids. Metagonimiasis was described by Katsurasa in 1911–1913 when he first observed eggs of M. yokagawai in feces. M. takahashii was described later first by Suzuki in 1930 and then M. miyatai was described in 1984 by Saito.

<i>Taenia saginata</i> Species of flatworm

Taenia saginata, commonly known as the beef tapeworm, is a zoonotic tapeworm belonging to the order Cyclophyllidea and genus Taenia. It is an intestinal parasite in humans causing taeniasis and cysticercosis in cattle. Cattle are the intermediate hosts, where larval development occurs, while humans are definitive hosts harbouring the adult worms. It is found globally and most prevalently where cattle are raised and beef is consumed. It is relatively common in Africa, Europe, Southeast Asia, South Asia, and Latin America. Humans are generally infected as a result of eating raw or undercooked beef which contains the infective larvae, called cysticerci. As hermaphrodites, each body segment called proglottid has complete sets of both male and female reproductive systems. Thus, reproduction is by self-fertilisation. From humans, embryonated eggs, called oncospheres, are released with faeces and are transmitted to cattle through contaminated fodder. Oncospheres develop inside muscle, liver, and lungs of cattle into infective cysticerci.

<i>Myxobolus cerebralis</i> Species of parasite

Myxobolus cerebralis is a myxosporean parasite of salmonids that causes whirling disease in farmed salmon and trout and also in wild fish populations. It was first described in rainbow trout in Germany a century ago, but its range has spread and it has appeared in most of Europe, the United States, South Africa, Canada and other countries. In the 1980s, M. cerebralis was found to require a tubificid oligochaete to complete its life cycle. The parasite infects its hosts with its cells after piercing them with polar filaments ejected from nematocyst-like capsules.

<i>Ceratonova shasta</i> Species of marine parasite

Ceratonova shasta is a myxosporean parasite that infects salmonid fish on the Pacific coast of North America. It was first observed at the Crystal Lake Hatchery, Shasta County, California, and has now been reported from Idaho, Oregon, Washington, British Columbia and Alaska.

Tetracapsuloides bryosalmonae is a myxozoan parasite of salmonid fish. It is the only species currently recognized in the monotypic genus Tetracapsuloides. It is the cause of proliferative kidney disease (PKD), one of the most serious parasitic diseases of salmonid populations in Europe and North America that can result in losses of up to 90% in infected populations.

Kudoa thyrsites is a myxosporean parasite of marine fishes. It has a worldwide distribution, and infects a wide range of host species. This parasite is responsible for causing economic losses to the fisheries sector, by causing post-mortem "myoliquefaction", a softening of the flesh to such an extent that the fish becomes unmarketable. It is not infective to humans.

<i>Opisthorchis felineus</i> Species of fluke

Opisthorchis felineus, or cat liver fluke is a trematode parasite that infects the liver in mammals. It was first discovered in 1884 in a cat's liver by Sebastiano Rivolta of Italy. In 1891, Russian parasitologist, Konstantin Nikolaevich Vinogradov (1847–1906) found it in a human, and named the parasite a "Siberian liver fluke". In the 1930s, helminthologist Hans Vogel of Hamburg published an article describing the life cycle of Opisthorchis felineus. felineus infections may also involve the pancreatic ducts. Diagnosis of Opisthorchis infection is based on microscopic identification of parasite eggs in stool specimens. Safe and effective medication is available to treat Opisthorchis infections. Adequately freezing or cooking fish will kill the parasite

Capillaria philippinensis is a parasitic nematode which causes intestinal capillariasis. This sometimes fatal disease was first discovered in Northern Luzon, Philippines in 1964. Cases have also been reported from China, Egypt, Indonesia, Iran, Japan, Korea, Lao PDR, Taiwan and Thailand. Cases diagnosed in Italy and Spain were believed to be acquired abroad, with one case possibly contracted in Colombia. The natural life cycle of C. philippinensis is believed to involve fish as intermediate hosts, and fish-eating birds as definitive hosts. Humans acquire C. philippinensis by eating small species of infested fish whole and raw.

<i>Nanophyetus salmincola</i> Species of fluke

Nanophyetus salmincola is a food-borne intestinal trematode parasite prevalent on the Pacific Northwest coast. The species may be the most common trematode endemic to the United States.

<i>Heterophyes heterophyes</i> Species of fluke

Heterophyes heterophyes was discovered by Theodor Maximaillian Bilharz in 1851. This parasite was found during an autopsy of an Egyptian mummy. H. heterophyes is found in the Middle East, West Europe and Africa. They use different species to complete their complex lifestyle. Humans and other mammals are the definitive host, first intermediate host are snails, and second intermediate are fish. Mammals that come in contact with the parasite are dogs, humans, and cats. Snails that are affected by this parasite are the Cerithideopsilla conica. Fish that come in contact with this parasite are Mugil cephalus, Tilapia milotica, Aphanius fasciatus, and Acanthgobius sp. Humans and mammals will come in contact with this parasite by the consumption of contaminated or raw fish. This parasite is one of the smallest endoparasite to infect humans. It can cause intestinal infection called heterophyiasis.

Thelohanellus is a genus of myxozoan in the family Myxobolidae..

<i>Kudoa</i> Genus of marine parasites

Kudoa is a genus of Myxozoa and the only genus recognized within the monotypic family Kudoidae. There are approximately 100 species of Kudoa all of which parasitize on marine and estuarine fish. Kudoa are most commonly known and studied for the negative effects the genus has on commercial fishing and aquaculture industries.

<i>Enteromyxum leei</i> Species of marine parasite

Enteromyxum leei is a species of myxozoan, histozoic parasite that infects the intestinal tract and sometimes associated organs, like gall bladder and liver, of several teleostean fish species. Myxozoans are microscopic metazoans, with an obligate parasitic life-style. The parasite stages of this species live in the paracelullar space between fish enterocytes. It is the causative agent of enteromyxosis, or emaciative disease, also known as "razor blade syndrome" in sparid fish. E. leei has a wide host and geographical range within marine fish, and even freshwater fish have been infected experimentally. E. leei initially emerged in the Mediterranean in the late 1980s and it is believed to have been unintentionally introduced into the Red Sea. Its pathogenicity and economic impact depend on the host species. In the gilt-head seabream, it is manifested as a chronic disease that provokes anorexia, delayed growth with weight loss, cachexia, reduced marketability and increased mortality. In other species, it has no clinical signs. In sharpsnout seabream, infection results in very high mortality rates, which have pushed fish farmers to abandon the culture of this fish species.

Enteromyxum scophthalmi is a species of parasitic myxozoan, a pathogen of fish. It is an intestinal parasite of the turbot and can cause outbreaks of disease in farmed fish. It causes a cachectic syndrome characterised by loss of weight, muscle atrophy, weakness and fatigue.

<i>Sphaerospora molnari</i> Species of marine parasite

Sphaerospora molnari is a microscopic endoparasite of carp in pond cultures and natural freshwater habitats in Central and Eastern Europe. In natural infections, S. molnari invades the epithelia of gills and surrounding skin regions. It then forms spores in between epithelial cells, causing sphaerosporosis, a pathological condition of the skin and gill tissues. Affected tissues show marked dystrophic changes and necrosis, causing secondary bacterial infections and resulting in osmoregulatory and respiratory failure. Mortalities can reach 100% but little is known about the overall distribution of the parasite species in European carp ponds or its economic impact on carp aquaculture.

References

  1. Kitaue K (1980) Intestinal giant-cystic disease affecting the carp, caused by Thelohanellus sp. Fish Pathology, 14, 145-146
  2. 1 2 Egusa S, Nakajima K (1981) A new Myxozoa Thelohanellus kitauei, the cause of intestinal giant cystic disease of carp. Fish Pathology 15, 213-218
  3. Fan ZG (1985) Study of thelohanellosis from common carp. Freshwater Fish 5, 16-18
  4. Liu Y, Whipps CM, Liu WS, Zeng LB, Gu ZM (2011) Supplemental diagnosis of a myxozoan parasite from common carp Cyprinus carpio: synonymy of Thelohanellus xinyangensis with Thelohanellus kitauei. Veterinary Parasitology 178, 355-359
  5. Shin SP, Jee H, Han JE, Kim JH, Choresca CH, Jun JW, Kim DY, Park SC (2011) Surgical removal of an anal cyst caused by a protozoan parasite (Thelohanellus kitauei) from a koi (Cyprinus carpio) Journal of the American Veterinary Medicine Association 238, 784-786.
  6. Shin SP, Kim JH, Choresca CH, Han JE, Jun JW, Park SC (2013) Molecular identification and phylogenetic characterisation of Thelohanellus kitauei  Acta Veterinaria Hungarica 61, 30-35.
  7. 1 2 Zhai Y, Gu Z, Guo Q, Wu Z, Wang H, Liu Y (2016) New type of pathogenicity of Thelohanellus kitauei Egusa & Nakajima, 1981 infecting the skin of common carp Cyprinus carpio L. Parasitology International 65, 78-82.
  8. 1 2 3 YanYL, Xiong J, Zhou ZG, Huo FM, Miao W, Ran C et al. (2014) The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biology and Evolution 6, 3182-3198.
  9. Zhao D, Borkhanuddin MH, Wang W, Liu Y, Cech G, Zhai Y, Székely C (2016) The life cycle of Thelohanellus kitauei(Myxozoa: Myxosporea) infecting common carp (Cyprinus carpio) involves aurantiactinomyxon in Branchiura sowerbyi. Parasitology Research 115, 4317-4325.
  10. Ye L, LU M, Quan K, Li W, Zou H, Wu S, Wang J, Wang G (2016) Intestinal disease of scattered mirror carp Cyprinus carpio caused by Thelohanellus kitauei and notes on the morphology and phylogeny of the myxosporean from Sichuan Province, southwest China. Chinese Journal of Oceanology and Limnology 35, 587-596.
  11. Seo JS, Jeon EJ, Kim MS, Woo SH, Kim JD, Jung SH, Park MA, Jee BY, Kim JW, Kim YC, Lee EH (2012) Molecular identification and real-time quantitative PCR (qPCR) for rapid detection of Thelohanellus kitauei, a myxozoan parasite causing Intestinal Giant Cystic Disease in the Israel Carp. Korean Journal of Parasitology 50, 103-111.