Thermal bridge

Last updated
Temperature distribution in a thermal bridge Thermal bridge by Zureks.png
Temperature distribution in a thermal bridge
This thermal image shows a thermal bridging of a high-rise building (Aqua in Chicago) Aqua Tower thermal imaging.jpg
This thermal image shows a thermal bridging of a high-rise building (Aqua in Chicago)

A thermal bridge, also called a cold bridge, heat bridge, or thermal bypass, is an area or component of an object which has higher thermal conductivity than the surrounding materials, [1] creating a path of least resistance for heat transfer. [2] Thermal bridges result in an overall reduction in thermal resistance of the object. The term is frequently discussed in the context of a building's thermal envelope where thermal bridges result in heat transfer into or out of conditioned space.

Contents

Thermal bridges in buildings may impact the amount of energy required to heat and cool a space, cause condensation (moisture) within the building envelope, [3] and result in thermal discomfort. In colder climates (such as the United Kingdom), thermal heat bridges can result in additional heat losses and require additional energy to mitigate.

There are strategies to reduce or prevent thermal bridging, such as limiting the number of building members that span from unconditioned to conditioned space and applying continuous insulation materials to create thermal breaks.

Concept

Thermal bridge at junction. Heat moves from the floor structure through the wall because there is no thermal break. Jonction plancher haut-mur exterieur 2.jpg
Thermal bridge at junction. Heat moves from the floor structure through the wall because there is no thermal break.

Heat transfer occurs through three mechanisms: convection, radiation, and conduction. [4] A thermal bridge is an example of heat transfer through conduction. The rate of heat transfer depends on the thermal conductivity of the material and the temperature difference experienced on either side of the thermal bridge. When a temperature difference is present, heat flow will follow the path of least resistance through the material with the highest thermal conductivity and lowest thermal resistance; this path is a thermal bridge. [5] Thermal bridging describes a situation in a building where there is a direct connection between the outside and inside through one or more elements that possess a higher thermal conductivity than the rest of the envelope of the building.

Identifying Thermal Bridges

Surveying buildings for thermal bridges is performed using passive infrared thermography (IRT) according to the International Organization for Standardization (ISO). Infrared Thermography of buildings can allow thermal signatures that indicate heat leaks. IRT detects thermal abnormalities that are linked to the movement of fluids through building elements, highlighting the variations in the thermal properties of the materials that correspondingly cause a major change in temperature. The drop shadow effect, a situation in which the surrounding environment casts a shadow on the facade of the building, can lead to potential accuracy issues of measurements through inconsistent facade sun exposure. An alternative analysis method, Iterative Filtering (IF), can be used to solve this problem.

In all thermographic building inspections, the thermal image interpretation if performed by a human operator, involving a high level of subjectivity and expertise of the operator. Automated analysis approaches, such as Laser scanning technologies can provide thermal imaging on 3 dimensional CAD model surfaces and metric information to thermographic analyses. [6] Surface temperature data in 3D models can identify and measure thermal irregularities of thermal bridges and insulation leaks. Thermal imaging can also be acquired through the use of unmanned aerial vehicles (UAV), fusing thermal data from multiple cameras and platforms. The UAV uses an infrared camera to generate a thermal field image of recorded temperature values, where every pixel represents radiative energy emitted by the surface of the building. [7]

Thermal Bridging in Construction

Frequently, thermal bridging is used in reference to a building’s thermal envelope, which is a layer of the building enclosure system that resists heat flow between the interior conditioned environment and the exterior unconditioned environment. Heat will transfer through a building’s thermal envelope at different rates depending on the materials present throughout the envelope. Heat transfer will be greater at thermal bridge locations than where insulation exists because there is less thermal resistance. [8] In the winter, when exterior temperature is typically lower than interior temperature, heat flows outward and will flow at greater rates through thermal bridges. At a thermal bridge location, the surface temperature on the inside of the building envelope will be lower than the surrounding area. In the summer, when the exterior temperature is typically higher than the interior temperature, heat flows inward, and at greater rates through thermal bridges. [9] This causes winter heat losses and summer heat gains for conditioned spaces in buildings. [10]

Despite insulation requirements specified by various national regulations, thermal bridging in a building's envelope remain a weak spot in the construction industry. Moreover, in many countries building design practices implement partial insulation measurements foreseen by regulations. [11] As a result, thermal losses are greater in practice that is anticipated during the design stage.

An assembly such as an exterior wall or insulated ceiling is generally classified by a U-factor, in W/m2·K, that reflects the overall rate of heat transfer per unit area for all the materials within an assembly, not just the insulation layer. Heat transfer via thermal bridges reduces the overall thermal resistance of an assembly, resulting in an increased U-factor. [12]

Thermal bridges can occur at several locations within a building envelope; most commonly, they occur at junctions between two or more building elements. Common locations include:

Structural elements remain a weak point in construction, commonly leading to thermal bridges that result in high heat loss and low surface temperatures in a room.

Masonry Buildings

While thermal bridges exist in various types of building enclosures, masonry walls experience significantly increased U-factors caused by thermal bridges. Comparing thermal conductivities between different building materials allows for assessment of performance relative to other design options. Brick materials, which are usually used for facade enclosures, typically have higher thermal conductivities than timber, depending on the brick density and wood type. [15] Concrete, which may be used for floors and edge beams in masonry buildings are common thermal bridges, especially at the corners. Depending on the physical makeup of the concrete, the thermal conductivity can be greater than that of brick materials. [15] In addition to heat transfer, if the indoor environment is not adequately vented, thermal bridging may cause the brick material to absorb rainwater and humidity into the wall, which can result in mold growth and deterioration of building envelope material.

Curtain Wall

Similar to masonry walls, curtain walls can experience significantly increased U-factors due to thermal bridging. Curtain wall frames are often constructed with highly conductive aluminum, which has a typical thermal conductivity above 200 W/m·K. In comparison, wood framing members are typically between 0.68 and 1.25 W/m·K. [15] The aluminum frame for most curtain wall constructions extends from the exterior of the building through to the interior, creating thermal bridges. [16]

Impacts of Thermal Bridging

Thermal bridging can result in increased energy required to heat or cool a conditioned space due to winter heat loss and summer heat gain. At interior locations near thermal bridges, occupants may experience thermal discomfort due to the difference in temperature. [17] Additionally, when the temperature difference between indoor and outdoor space is large and there is warm and humid air indoors, such as the conditions experienced in the winter, there is a risk of condensation in the building envelope due to the cooler temperature on the interior surface at thermal bridge locations. [17] Condensation can ultimately result in mold growth with consequent poor indoor air quality and insulation degradation, reducing the insulation performance and causing insulation to perform inconsistently throughout the thermal envelope [18]

Design Methods to Reduce Thermal Bridges

There are several methods that have been proven to reduce or eliminate thermal bridging depending on the cause, location, and the construction type. The objective of these methods is to either create a thermal break where a building component would span from exterior to interior otherwise, or to reduce the number of building components spanning from exterior to interior. These strategies include:

Analysis Methods and Challenges

Due to their significant impacts on heat transfer, correctly modeling the impacts of thermal bridges is important to estimate overall energy use. Thermal bridges are characterized by multi-dimensional heat transfer, and therefore they cannot be adequately approximated by steady-state one-dimensional (1D) models of calculation typically used to estimate the thermal performance of buildings in most building energy simulation tools. [21] Steady state heat transfer models are based on simple heat flow where heat is driven by a temperature difference that does not fluctuate over time so that heat flow is always in one direction. This type of 1D model can substantially underestimate heat transfer through the envelope when thermal bridges are present, resulting in lower predicted building energy use. [22]

The currently available solutions are to enable two-dimensional (2D) and three-dimensional (3D) heat transfer capabilities in modeling software or, more commonly, to use a method that translates multi-dimensional heat transfer into an equivalent 1D component to use in building simulation software. This latter method can be accomplished through the equivalent wall method in which a complex dynamic assembly, such as a wall with a thermal bridge, is represented by a 1D multi-layered assembly that has equivalent thermal characteristics. [23]

See also

Related Research Articles

A Trombe wall is a massive equator-facing wall that is painted a dark color in order to absorb thermal energy from incident sunlight and covered with a glass on the outside with an insulating air-gap between the wall and the glaze. A Trombe wall is a passive solar building design strategy that adopts the concept of indirect-gain, where sunlight first strikes a solar energy collection surface in contact with a thermal mass of air. The sunlight absorbed by the mass is converted to thermal energy (heat) and then transferred into the living space.

<span class="mw-page-title-main">Passive solar building design</span> Architectural engineering that uses the Suns heat without electric or mechanical systems

In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.

<span class="mw-page-title-main">Thermal insulation</span> Minimization of heat transfer

Thermal insulation is the reduction of heat transfer between objects in thermal contact or in range of radiative influence. Thermal insulation can be achieved with specially engineered methods or processes, as well as with suitable object shapes and materials.

<span class="mw-page-title-main">Thermal mass</span> Use of thermal energy storage in building design

In building design, thermal mass is a property of the mass of a building that enables it to store heat and provide inertia against temperature fluctuations. It is sometimes known as the thermal flywheel effect. The thermal mass of heavy structural elements can be designed to work alongside a construction's lighter thermal resistance components to create energy efficient buildings.

<i>R</i>-value (insulation) Measure of how well an object, per unit of area, resists conductive flow of heat

In the context of construction, the R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions. The measure is therefore equally relevant for lowering energy bills for heating in the winter, for cooling in the summer, and for general comfort.

<span class="mw-page-title-main">Thermography</span> Use of thermograms to study heat distribution in structures or regions

Infrared thermography (IRT), thermal video and/or thermal imaging, is a process where a thermal camera captures and creates an image of an object by using infrared radiation emitted from the object in a process, which are examples of infrared imaging science. Thermographic cameras usually detect radiation in the long-infrared range of the electromagnetic spectrum and produce images of that radiation, called thermograms. Since infrared radiation is emitted by all objects with a temperature above absolute zero according to the black body radiation law, thermography makes it possible to see one's environment with or without visible illumination. The amount of radiation emitted by an object increases with temperature; therefore, thermography allows one to see variations in temperature. When viewed through a thermal imaging camera, warm objects stand out well against cooler backgrounds; humans and other warm-blooded animals become easily visible against the environment, day or night. As a result, thermography is particularly useful to the military and other users of surveillance cameras.

<span class="mw-page-title-main">Heat recovery ventilation</span> Uses the energy in air exhausted from a building to treat the incoming air

Heat recovery ventilation (HRV), also known as mechanical ventilation heat recovery (MVHR), is an energy recovery ventilation system that operates between two air sources at different temperatures. It's a method that is used to reduce the heating and cooling demands of buildings. By recovering the residual heat in the exhaust gas, the fresh air introduced into the air conditioning system is preheated before it enters the room, or the air cooler of the air conditioning unit performs heat and moisture treatment. A typical heat recovery system in buildings comprises a core unit, channels for fresh and exhaust air, and blower fans. Building exhaust air is used as either a heat source or heat sink, depending on the climate conditions, time of year, and requirements of the building. Heat recovery systems typically recover about 60–95% of the heat in the exhaust air and have significantly improved the energy efficiency of buildings.

<span class="mw-page-title-main">Insulating concrete form</span>

Insulating concrete form or insulated concrete form (ICF) is a system of formwork for reinforced concrete usually made with a rigid thermal insulation that stays in place as a permanent interior and exterior substrate for walls, floors, and roofs. The forms are interlocking modular units that are dry-stacked and filled with concrete. The units lock together somewhat like Lego bricks and create a form for the structural walls or floors of a building. ICF construction has become commonplace for both low rise commercial and high performance residential construction as more stringent energy efficiency and natural disaster resistant building codes are adopted.

A vacuum insulated panel (VIP) is a form of thermal insulation consisting of a gas-tight enclosure surrounding a rigid core, from which the air has been evacuated. It is used in building construction, refrigeration units, and insulated shipping containers to provide better insulation performance than conventional insulation materials.

<span class="mw-page-title-main">Superinsulation</span> Method of insulating a building

Superinsulation is an approach to building design, construction, and retrofitting that dramatically reduces heat loss by using much higher insulation levels and airtightness than average. Superinsulation is one of the ancestors of the passive house approach.

A building envelope or building enclosure is the physical separator between the conditioned and unconditioned environment of a building, including the resistance to air, water, heat, light, and noise transfer.

<span class="mw-page-title-main">Underfloor heating</span> Form of central heating and cooling

Underfloor heating and cooling is a form of central heating and cooling that achieves indoor climate control for thermal comfort using hydronic or electrical heating elements embedded in a floor. Heating is achieved by conduction, radiation and convection. Use of underfloor heating dates back to the Neoglacial and Neolithic periods.

<span class="mw-page-title-main">Building insulation</span> Material to reduce heat transfer in structures

Building insulation is material used in a building to reduce the flow of thermal energy. While the majority of insulation in buildings is for thermal purposes, the term also applies to acoustic insulation, fire insulation, and impact insulation. Often an insulation material will be chosen for its ability to perform several of these functions at once.

<span class="mw-page-title-main">Insulated glazing</span> Construction element consisting of at least two glass plates

Insulating glass (IG) consists of two or more glass window panes separated by a space to reduce heat transfer across a part of the building envelope. A window with insulating glass is commonly known as double glazing or a double-paned window, triple glazing or a triple-paned window, or quadruple glazing or a quadruple-paned window, depending upon how many panes of glass are used in its construction.

Dynamic insulation is a form of insulation where cool outside air flowing through the thermal insulation in the envelope of a building will pick up heat from the insulation fibres. Buildings can be designed to exploit this to reduce the transmission heat loss (U-value) and to provide pre-warmed, draft free air to interior spaces. This is known as dynamic insulation since the U-value is no longer constant for a given wall or roof construction but varies with the speed of the air flowing through the insulation. Dynamic insulation is different from breathing walls. The positive aspects of dynamic insulation need to be weighed against the more conventional approach to building design which is to create an airtight envelope and provide appropriate ventilation using either natural ventilation or mechanical ventilation with heat recovery. The air-tight approach to building envelope design, unlike dynamic insulation, results in a building envelope that provides a consistent performance in terms of heat loss and risk of interstitial condensation that is independent of wind speed and direction. Under certain wind conditions a dynamically insulated building can have a higher heat transmission loss than an air-tight building with the same thickness of insulation. Often the air enters at about 15 °C.

Clothing insulation is the thermal insulation provided by clothing.

Sustainable refurbishment describes working on existing buildings to improve their environmental performance using sustainable methods and materials. A refurbishment or retrofit is defined as: "any work to a building over and above maintenance to change its capacity, function or performance' in other words, any intervention to adjust, reuse, or upgrade a building to suit new conditions or requirements". Refurbishment can be done to a part of a building, an entire building, or a campus. Sustainable refurbishment takes this a step further to modify the existing building to perform better in terms of its environmental impact and its occupants' environment.

<span class="mw-page-title-main">Radiant heating and cooling</span> Category of HVAC technologies

Radiant heating and cooling is a category of HVAC technologies that exchange heat by both convection and radiation with the environments they are designed to heat or cool. There are many subcategories of radiant heating and cooling, including: "radiant ceiling panels", "embedded surface systems", "thermally active building systems", and infrared heaters. According to some definitions, a technology is only included in this category if radiation comprises more than 50% of its heat exchange with the environment; therefore technologies such as radiators and chilled beams are usually not considered radiant heating or cooling. Within this category, it is practical to distinguish between high temperature radiant heating, and radiant heating or cooling with more moderate source temperatures. This article mainly addresses radiant heating and cooling with moderate source temperatures, used to heat or cool indoor environments. Moderate temperature radiant heating and cooling is usually composed of relatively large surfaces that are internally heated or cooled using hydronic or electrical sources. For high temperature indoor or outdoor radiant heating, see: Infrared heater. For snow melt applications see: Snowmelt system.

Cooling load is the rate at which sensible and latent heat must be removed from the space to maintain a constant space dry-bulb air temperature and humidity. Sensible heat into the space causes its air temperature to rise while latent heat is associated with the rise of the moisture content in the space. The building design, internal equipment, occupants, and outdoor weather conditions may affect the cooling load in a building using different heat transfer mechanisms. The SI units are watts.

<span class="mw-page-title-main">Elżbieta Kossecka</span> Polish physicist

Elżbieta Kossecka is a Polish physicist. She is a professor of technical sciences and a researcher at the Institute of Fundamental Technological Research, Polish Academy of Sciences.

References

  1. Binggeli, C. (2010). Building Systems for Interior Designers. Hoboken, NJ: John Wiley & Sons.
  2. Gorse, Christopher A., and David Johnston (2012). "Thermal bridge", in Oxford Dictionary of Construction, Surveying, and Civil Engineering. 3rd ed. Oxford: Oxford UP, 2012 pp. 440-441. Print.
  3. Arena, Lois (July 2016). "Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation" (PDF). NREL.gov. Golden, CO: National Renewable Energy Laboratory (NREL).
  4. Kaviany, Massoud (2011). Essentials of Heat Transfer: Principles, Materials, and Applications. New York, NY: Cambridge University Press. ISBN   978-1107012400.
  5. 1 2 "Definition and effects of thermal bridges []". passipedia.org. Retrieved 2017-11-05.
  6. Previtali, Mattia; Barazzetti, Luigi; Roncoroni, Fabio (24–27 June 2013). "Spatial Data Management for Energy Efficient Envelope Retrofitting". Computational Science and Its Applications – ICCSA 2013. Lecture Notes in Computer Science. Vol. 7971. pp. 608–621. doi:10.1007/978-3-642-39637-3_48. ISBN   978-3-642-39636-6.
  7. Garrido, I.; Lagüela, S.; Arias, P.; Balado, J. (1 January 2018). "Thermal-based analysis for the automatic detection and characterization of thermal bridges in buildings". Energy and Buildings. 158: 1358–1367. doi:10.1016/j.enbuild.2017.11.031. hdl: 11093/1459 .
  8. "RR-0901: Thermal Metrics for High-Performance Walls—The Limitations of R-Value". Building Science Corporation. Retrieved 2017-11-19.
  9. Grondzik, Walter; Kwok, Alison (2014). Mechanical and Electrical Equipment for Buildings. John Wiley & Sons. ISBN   978-0470195659.
  10. Larbi, A. Ben (2005). "Statistical modelling of heat transfer for thermal bridges of buildings". Energy and Buildings. 37 (9): 945–951. doi:10.1016/j.enbuild.2004.12.013.
  11. THEODOSIOU, T. G, and A. M PAPADOPOULOS. 2008. “The Impact of Thermal Bridges on the Energy Demand of Buildings with Double Brick Wall Constructions.” Energy and Buildings, no. 11: 2083.
  12. Kossecka, E.; Kosny, J. (2016-09-16). "Equivalent Wall as a Dynamic Model of a Complex Thermal Structure". Journal of Thermal Insulation and Building Envelopes. 20 (3): 249–268. doi:10.1177/109719639702000306. S2CID   108777777.
  13. 1 2 3 Christian, Jeffery; Kosny, Jan (December 1995). "Toward a National Opaque Wall Rating Label". Proceedings Thermal Performance of the Exterior Envelopes VI, ASHRAE.
  14. 1 2 Allen, E. and J. Lano, Fundamentals of Building Construction: materials and methods. Hoboken, NJ: John Wiley & Sons. 2009.
  15. 1 2 3 American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc. (ASHRAE) (2017). 2017 ASHRAE Handbook: Fundamentals. Atlanta, GA: ASHRAE. ISBN   978-1939200570.{{cite book}}: CS1 maint: multiple names: authors list (link)
  16. Totten, Paul E.; O’Brien, Sean M. (2008). "The Effects of Thermal Bridging at Interface Conditions". Building Enclosure Science & Technology.
  17. 1 2 Ge, Hua; McClung, Victoria Ruth; Zhang, Shenshu (2013). "Impact of balcony thermal bridges on the overall thermal performance of multi-unit residential buildings: A case study". Energy and Buildings. 60: 163–173. doi:10.1016/j.enbuild.2013.01.004.
  18. Matilainen, Miimu; Jarek, Kurnitski (2002). "Moisture conditions in highly insulated outdoor ventilated crawl spaces in cold climates". Energy and Buildings. 35 (2): 175–187. doi:10.1016/S0378-7788(02)00029-4.
  19. 1 2 3 California Energy Commission (CEC) (2015). Residential Compliance Manual for the 2016 Building Energy Efficiency Standards. California Energy Commission.
  20. 1 2 Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjørn Petter; Goudey, Howdy (2011). "Key elements of and material performance targets for highly insulating window frames". Energy and Buildings. 43 (10): 2583–2594. doi:10.1016/j.enbuild.2011.05.010. OSTI   1051278. S2CID   72987269.
  21. Martin, K.; Erkoreka, A.; Flores, I.; Odriozola, M.; Sala, J.M. (2011). "Problems in the calculation of thermal bridges in dynamic conditions". Energy and Buildings. 43 (2–3): 529–535. doi:10.1016/j.enbuild.2010.10.018.
  22. Mao, Guofeng; Johanneson, Gudni (1997). "Dynamic Calculation of Thermal Bridges". Energy and Buildings. 26 (3): 233–240. doi:10.1016/s0378-7788(97)00005-4.
  23. Kossecka, E.; Kosny, J. (January 1997). "Equivalent Wall as a Dynamic Model of a Complex Thermal Structure". J. Therm. Insul. Build. Envelopes. 20 (3): 249–268. doi:10.1177/109719639702000306. S2CID   108777777.