Masonry

Last updated
A mason laying mortar on top of a finished course of blocks, prior to placing the next course. Mason at work.jpg
A mason laying mortar on top of a finished course of blocks, prior to placing the next course.

Masonry is the building of structures from individual units, which are often laid in and bound together by mortar; the term masonry can also refer to the units themselves. The common materials of masonry construction are brick, building stone such as marble, granite, and limestone, cast stone, concrete block, glass block, and adobe. Masonry is generally a highly durable form of construction. However, the materials used, the quality of the mortar and workmanship, and the pattern in which the units are assembled can substantially affect the durability of the overall masonry construction. A person who constructs masonry is called a mason or bricklayer. These are both classified as construction trades.

Contents

Applications

Masonry is commonly used for walls and buildings. Brick and concrete block are the most common types of masonry in use in industrialized nations and may be either weight-bearing or a veneer. Concrete blocks, especially those with hollow cores, offer various possibilities in masonry construction. They generally provide great compressive strength and are best suited to structures with light transverse loading when the cores remain unfilled. Filling some or all of the cores with concrete or concrete with steel reinforcement (typically rebar) offers much greater tensile and lateral strength to structures. Masonry workers are typically paid hourly depending on their position.

Advantages

Disadvantages

Structural limitations

Masonry has high compressive strength under vertical loads but has low tensile strength (against twisting or stretching) unless reinforced. The tensile strength of masonry walls can be increased by thickening the wall, or by building masonry piers (vertical columns or ribs) at intervals. Where practical, steel reinforcements such as windposts can be added.

Veneer masonry

A masonry veneer wall consists of masonry units, usually clay-based bricks, installed on one or both sides of a structurally independent wall usually constructed of wood or masonry. In this context the brick masonry is primarily decorative, not structural. The brick veneer is generally connected to the structural wall by brick ties (metal strips that are attached to the structural wall, as well as the mortar joints of the brick veneer). There is typically an air gap between the brick veneer and the structural wall. As clay-based brick is usually not completely waterproof, the structural wall will often have a water-resistant surface (usually tar paper) and weep holes can be left at the base of the brick veneer to drain moisture that accumulates inside the air gap. Concrete blocks, real and cultured stones, and veneer adobe are sometimes used in a very similar veneer fashion.

Most insulated buildings that utilize concrete block, brick, adobe, stone, veneers or some combination thereof feature interior insulation in the form of fiberglass batts between wooden wall studs or in the form of rigid insulation boards covered with plaster or drywall. In most climates this insulation is much more effective on the exterior of the wall, allowing the building interior to take advantage of the aforementioned thermal mass of the masonry. This technique does, however, require some sort of weather-resistant exterior surface over the insulation and, consequently, is generally more expensive.

Dry set masonry

Dry set masonry supports a rustic log bridge, where it provides a well-drained support for the log (which will increase its service life). Vallorcine bridge abutment 2003-12-13.jpg
Dry set masonry supports a rustic log bridge, where it provides a well-drained support for the log (which will increase its service life).

The strength of a masonry wall is not entirely dependent on the bond between the building material and the mortar; the friction between the interlocking blocks of masonry is often strong enough to provide a great deal of strength on its own. The blocks sometimes have grooves or other surface features added to enhance this interlocking, and some dry set masonry structures forgo mortar altogether.

Brick

Brick Work Brick Work 2015-02-8 278.jpg
Brick Work

Solid brickwork is made of two or more wythes of bricks with the units running horizontally (called stretcher bricks) bound together with bricks running transverse to the wall (called "header" bricks). Each row of bricks is known as a course. The pattern of headers and stretchers employed gives rise to different 'bonds' such as the common bond (with every sixth course composed of headers), the English bond, and the Flemish bond (with alternating stretcher and header bricks present on every course). Bonds can differ in strength and in insulating ability. Vertically staggered bonds tend to be somewhat stronger and less prone to major cracking than a non-staggered bond.

Uniformity and rusticity

Masonry repair work done to a brick wall. Athruzmasonry.jpg
Masonry repair work done to a brick wall.

The wide selection of brick styles and types generally available in industrialized nations allow much variety in the appearance of the final product. In buildings built during the 1950s-1970s, a high degree of uniformity of brick and accuracy in masonry was typical. In the period since then this style was thought to be too sterile, so attempts were made to emulate older, rougher work. Some brick surfaces are made to look particularly rustic by including burnt bricks, which have a darker color or an irregular shape. Others may use antique salvage bricks, or new bricks may be artificially aged by applying various surface treatments, such as tumbling. The attempts at rusticity of the late 20th century have been carried forward by masons specializing in a free, artistic style, where the courses are intentionally not straight, instead weaving to form more organic impressions.

Serpentine masonry

A crinkle-crankle wall is a brick wall that follows a serpentine path, rather than a straight line. This type of wall is more resistant to toppling than a straight wall; so much so that it may be made of a single wythe of unreinforced brick and so despite its longer length may be more economical than a straight wall.

Concrete block

Concrete masonry units (CMUs) or blocks in a basement wall before burial. CMUs.jpg
Concrete masonry units (CMUs) or blocks in a basement wall before burial.

Blocks of cinder concrete ( cinder blocks or breezeblocks), ordinary concrete ( concrete blocks ), or hollow tile are generically known as Concrete Masonry Units (CMUs). They usually are much larger than ordinary bricks and so are much faster to lay for a wall of a given size. Furthermore, cinder and concrete blocks typically have much lower water absorption rates than brick. They often are used as the structural core for veneered brick masonry, or are used alone for the walls of factories, garages and other industrial-style buildings where such appearance is acceptable or desirable. Such blocks often receive a stucco surface for decoration. Surface-bonding cement, which contains synthetic fibers for reinforcement, is sometimes used in this application and can impart extra strength to a block wall. Surface-bonding cement is often pre-coloured and can be stained or painted thus resulting in a finished stucco-like surface.

The primary structural advantage of concrete blocks in comparison to smaller clay-based bricks is that a CMU wall can be reinforced by filling the block voids with concrete with or without steel rebar. Generally, certain voids are designated for filling and reinforcement, particularly at corners, wall-ends, and openings while other voids are left empty. This increases wall strength and stability more economically than filling and reinforcing all voids. Typically, structures made of CMUs will have the top course of blocks in the walls filled with concrete and tied together with steel reinforcement to form a bond beam. Bond beams are often a requirement of modern building codes and controls. Another type of steel reinforcement, referred to as ladder-reinforcement, can also be embedded in horizontal mortar joints of concrete block walls. The introduction of steel reinforcement generally results in a CMU wall having much greater lateral and tensile strength than unreinforced walls.

"Architectural masonry is the evolvement of standard concrete masonry blocks into aesthetically pleasing concrete masonry units (CMUs)."[ citation needed ] CMUs can be manufactured to provide a variety of surface appearances. They can be colored during manufacturing or stained or painted after installation. They can be split as part of the manufacturing process, giving the blocks a rough face replicating the appearance of natural stone, such as brownstone. CMUs may also be scored, ribbed, sandblasted, polished, striated (raked or brushed), include decorative aggregates, be allowed to slump in a controlled fashion during curing, or include several of these techniques in their manufacture to provide a decorative appearance. [1]

"Glazed concrete masonry units are manufactured by bonding a permanent colored facing (typically composed of polyester resins, silica sand and various other chemicals) to a concrete masonry unit, providing a smooth impervious surface." [2]

Glass block or glass brick are blocks made from glass and provide a translucent to clear vision through the block.

Stonework

Stone Masonry Kelibia stone masonry.JPG
Stone Masonry

Stone blocks used in masonry can be dressed or rough, though in both examples: corners, door and window jambs, and similar areas are usually dressed. Stone masonry utilizing dressed stones is known as ashlar masonry, whereas masonry using irregularly shaped stones is known as rubble masonry. Both rubble and ashlar masonry can be laid in coursed rows of even height through the careful selection or cutting of stones, but a great deal of stone masonry is uncoursed.

Gabions

Gabion Wall A Voros es a Kek kapolnak kozotti setany kerti lugassal, gabion tamfalrendszerrel, 2018 Balatonboglar.jpg
Gabion Wall

Gabions are baskets, usually now of zinc-protected steel (galvanized steel) that are filled with fractured stone of medium size. These will act as a single unit and are stacked with setbacks to form a revetment or retaining wall. They have the advantage of being well drained, flexible, and resistant to flood, water flow from above, frost damage, and soil flow. Their expected useful life is only as long as the wire they are composed of and if used in severe climates (such as shore-side in a salt water environment) must be made of appropriate corrosion-resistant wire. Most modern gabions are rectangular.

Earlier gabions were often cylindrical wicker baskets, open at both ends, used usually for temporary, often military, construction.

Similar work can be done with finer aggregates using cellular confinement.

Passive fire protection (PFP)

Masonry walls have an endothermic effect of its hydrates, as in chemically bound water, unbound moisture from the concrete block, and the poured concrete if the hollow cores inside the blocks are filled. Masonry can withstand temperatures up to 1,000ºF and it can withstand direct exposure to fire for up to 4 hours.[ citation needed ] In addition to that, concrete masonry keeps fires contained to their room of origin 93% of the time. For those reasons, concrete masonry units hold the highest fire class flame spread classification, a Class A.

Masonry buildings can also be built to increase safety by reducing fire damage, such as the use of fire cuts during construction.

Mechanical modelling of masonry structures

A comparison (using transmission photoelasticity) between the stress diffusion in an elastic body (on the left) and a model of masonry (on the right). A highly localized stress percolation is visible on the right. Comparison masonry.jpg
A comparison (using transmission photoelasticity) between the stress diffusion in an elastic body (on the left) and a model of masonry (on the right). A highly localized stress percolation is visible on the right.

From the point of view of material modelling, masonry is a special material of extreme mechanical properties (with a very high ratio between strength in compression and in tension), so that the applied loads do not diffuse as they do in elastic bodies, but tend to percolate along lines of high stiffness, [3] [3] see the figure on the right and watch a video for more details.

See also

Masonry Associations

Related Research Articles

Brick Block or a single unit of a ceramic material used in masonry construction

A brick is building material used to make walls, pavements and other elements in masonry construction. Traditionally, the term brick referred to a unit composed of clay, but it is now used to denote rectangular units made of clay-bearing soil, sand, and lime, or concrete materials. Bricks can be joined together using mortar, adhesives or by interlocking them. Bricks are produced in numerous classes, types, materials, and sizes which vary with region and time period, and are produced in bulk quantities. Two basic categories of bricks are fired and non-fired bricks.

Concrete Composite construction material

Concrete is a composite material composed of fine and coarse aggregate bonded together with a fluid cement that hardens (cures) over time. In the past limebased cement binders were often used, such as lime putty, but sometimes with other hydraulic cements, such as a calcium aluminate cement or with Portland cement to form Portland cement concrete. Many other non-cementitious types of concrete exist with other methods of binding aggregate together, including asphalt concrete with a bitumen binder, which is frequently used for road surfaces, and polymer concretes that use polymers as a binder.

Reinforced concrete composite building material

Reinforced concrete (RC) is a composite material in which concrete's relatively low tensile strength and ductility are counteracted by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel reinforcing bars (rebar) and is usually embedded passively in the concrete before the concrete sets.

Stonemasonry The craft of creating buildings, structures, and sculpture using stone

Stonemasonry or stonecraft is the creation of buildings, structures, and sculpture using stone as the primary material. It is one of the oldest activities and professions in human history. Many of the long-lasting, ancient shelters, temples, monuments, artifacts, fortifications, roads, bridges, and entire cities were built of stone. Famous works of stonemasonry include the Egyptian Pyramids, the Taj Mahal, Cusco's Incan Wall, Easter Island's statues, Angkor Wat, Borobudur, Tihuanaco, Tenochtitlan, Persepolis, the Parthenon, Stonehenge, the Great Wall of China, Chartres Cathedral.

Rebar steel bar or mesh used within concrete

Rebar, known when massed as reinforcing steel or reinforcement steel, is a steel bar or mesh of steel wires used as a tension device in reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has weak tensile strength. Rebar significantly increases the tensile strength of the structure. Rebar's surface is often "deformed" with ribs, lugs or indentations to promote a better bond with the concrete and reduce the risk of slippage.

Grout

Grout is a dense fluid which is used to fill gaps or used as reinforcement in existing structures. Grout is generally a mixture of water, cement, and sand and is employed in pressure grouting, embedding rebar in masonry walls, connecting sections of pre-cast concrete, filling voids, and sealing joints such as those between tiles. Common uses for grout in the household include filling in tiles of shower floors and kitchen tiles. It is often color tinted when it has to be kept visible and sometimes includes fine gravel when being used to fill large spaces. Unlike other structural pastes such as plaster or joint compound, correctly mixed and applied grout forms a water resistant seal.

Building material Material which is used for construction purposes

Building material is any material which is used for construction purposes. Many naturally occurring substances, such as clay, rocks, sand, and wood, even twigs and leaves, have been used to construct buildings. Apart from naturally occurring materials, many man-made products are in use, some more and some less synthetic. The manufacturing of building materials is an established industry in many countries and the use of these materials is typically segmented into specific specialty trades, such as carpentry, insulation, plumbing, and roofing work. They provide the make-up of habitats and structures including homes.

Seismic retrofit Modification of existing structures to make them more resistant to seismic activity

Seismic retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion, or soil failure due to earthquakes. With better understanding of seismic demand on structures and with our recent experiences with large earthquakes near urban centers, the need of seismic retrofitting is well acknowledged. Prior to the introduction of modern seismic codes in the late 1960s for developed countries and late 1970s for many other parts of the world, many structures were designed without adequate detailing and reinforcement for seismic protection. In view of the imminent problem, various research work has been carried out. State-of-the-art technical guidelines for seismic assessment, retrofit and rehabilitation have been published around the world – such as the ASCE-SEI 41 and the New Zealand Society for Earthquake Engineering (NZSEE)'s guidelines. These codes must be regularly updated; the 1994 Northridge earthquake brought to light the brittleness of welded steel frames, for example.

Concrete masonry unit standard size rectangular block used in building construction

A concrete masonry unit (CMU) is a standard size rectangular block used in building construction. CMUs are some of the most versatile building products available because of the wide variety of appearances that can be achieved using concrete masonry units.

Steel frame building technique in which a skeleton frame of vertical steel columns is constructed in a rectangular grid; made the skyscraper possible

Steel frame is a building technique with a "skeleton frame" of vertical steel columns and horizontal I-beams, constructed in a rectangular grid to support the floors, roof and walls of a building which are all attached to the frame. The development of this technique made the construction of the skyscraper possible.

Autoclaved aerated concrete Lightweight, precast building material

Autoclaved aerated concrete (AAC) is a lightweight, precast, foam concrete building material suitable for producing concrete masonry unit (CMU) like blocks. Composed of quartz sand, calcined gypsum, lime, cement, water and aluminum powder, AAC products are cured under heat and pressure in an autoclave. Invented in the mid-1920s, AAC simultaneously provides structure, insulation, and fire- and mold-resistance. Forms include blocks, wall panels, floor and roof panels, cladding (façade) panels and lintels.

Precast concrete construction product produced by casting concrete in a reusable mold

Precast concrete is a construction product produced by casting concrete in a reusable mold or "form" which is then cured in a controlled environment, transported to the construction site and lifted into place. In contrast, standard concrete is poured into site-specific forms and cured on site. Precast stone is distinguished from precast concrete using a fine aggregate in the mixture, so the final product approaches the appearance of naturally occurring rock or stone. More recently expanded polystyrene is being used as the cores to precast wall panels. This is lightweight and has better thermal insulation.

Fiber-reinforced concrete (FRC) is concrete containing fibrous material which increases its structural integrity. It contains short discrete fibers that are uniformly distributed and randomly oriented. Fibers include steel fibers, glass fibers, synthetic fibers and natural fibers – each of which lend varying properties to the concrete. In addition, the character of fiber-reinforced concrete changes with varying concretes, fiber materials, geometries, distribution, orientation, and densities.

Masonry veneer thin external layer of brick, stone or manufactured stone applied to a surface for decorative effect

Masonry veneer walls consist of a single non-structural external layer of masonry, typically made of brick, stone or manufactured stone. Masonry veneer can have an air space behind it and is technically called "anchored veneer". A masonry veneer attached directly to the backing is called "adhered veneer". The innermost element is usually structural wall, and may consist of concrete masonry, concrete, wood or metal frame.

Course (architecture) layer of similar material in a structure, e.g. a row of bricks

A course is a layer of the same unit running horizontally in a wall. It can also be defined as a continuous row of any masonry unit such as bricks, concrete masonry units (CMU), stone, shingles, tiles, etc.

Structural material

Structural engineering depends on the knowledge of materials and their properties, in order to understand how different materials resist and support loads.

Structural clay tile class of building block

Structural clay tile describes a category of burned-clay building materials used to construct roofing, walls, and flooring for structural and non-structural purposes, especially in fireproofing applications. Also called building tile, structural terra cotta, hollow tile, and clay block, the material is an extruded clay shape with substantial depth that allows it to be laid in the same manner as other clay or concrete masonry. In North America it was chiefly used during the late 19th and early 20th centuries, reaching peak popularity at the turn of the century and declining around the 1950s. Structural clay tile grew in popularity in the end of the nineteenth-century because it could be constructed faster, was lighter, and required simpler flat falsework than earlier brick vaulting construction. Each unit is generally made of clay or terra-cotta with hollow cavities, or cells, inside it. The material is commonly used in floor arches, fireproofing, partition walls, and furring. It continues to be used in Europe to build fire-resistant walls and partitions. In North America the material has largely been replaced by concrete masonry units.

The infill wall is the supported wall that closes the perimeter of a building constructed with a three-dimensional framework structure. Therefore, the structural frame ensures the bearing function, whereas the infill wall serves to separate inner and outer space, filling up the boxes of the outer frames. The infill wall has the unique static function to bear its own weight. The infill wall is an external vertical opaque type of closure. With respect to other categories of wall, the infill wall differs from the partition that serves to separate two interior spaces, yet also non-load bearing, and from the load bearing wall. The latter performs the same functions of the infill wall, hygro-thermically and acoustically, but performs static functions too.


Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. "{title}". Archived from the original on 2009-05-21. Retrieved 2009-11-21.
  2. "Archived copy". Archived from the original on 2009-05-21. Retrieved 2009-11-21.CS1 maint: archived copy as title (link)
  3. 1 2 "Davide Bigoni". www.ing.unitn.it. Solid and Structural Mechanics Group – University of Trento.