Thermal fluids

Last updated

Thermofluids [1] [2] is a branch of science and engineering encompassing four intersecting fields:

Contents

The term is a combination of "thermo", referring to heat, and "fluids", which refers to liquids, gases and vapors. Temperature, pressure, equations of state, and transport laws all play an important role in thermofluid problems. Phase transition and chemical reactions may also be important in a thermofluid context. The subject is sometimes also referred to as "thermal fluids".

Heat transfer

Heat transfer is a discipline of thermal engineering that concerns the transfer of thermal energy from one physical system to another. Heat transfer is classified into various mechanisms, such as heat conduction, convection, thermal radiation, and phase-change transfer. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer.

Sections include :

Applications

Thermodynamics

Thermodynamics is the science of energy conversion involving heat and other forms of energy, most notably mechanical work. It studies and interrelates the macroscopic variables, such as temperature, volume and pressure, which describe physical, thermodynamic systems.

Fluid mechanics

Fluid Mechanics the study of the physical forces at work during fluid flow. Fluid mechanics can be divided into fluid kinematics, the study of fluid motion, and fluid kinetics, the study of the effect of forces on fluid motion. Fluid mechanics can further be divided into fluid statics, the study of fluids at rest, and fluid dynamics, the study of fluids in motion. Some of its more interesting concepts include momentum and reactive forces in fluid flow and fluid machinery theory and performance.

Sections include:

Applications

Combustion

Combustion is the sequence of exothermic chemical reactions between a fuel and an oxidant accompanied by the production of heat and conversion of chemical species. The release of heat can result in the production of light in the form of either glowing or a flame. Fuels of interest often include organic compounds (especially hydrocarbons) in the gas, liquid or solid phase.

Related Research Articles

Energy Physical property transferred to objects to perform heating or work

In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The SI unit of energy is the joule, which is the energy transferred to an object by the work of moving it a distance of 1 metre against a force of 1 newton.

Heat engine System that converts heat or thermal energy to mechanical work

In thermodynamics and engineering, a heat engine is a system that converts heat or thermal energy—and chemical energy—to mechanical energy, which can then be used to do mechanical work. It does this by bringing a working substance from a higher state temperature to a lower state temperature. A heat source generates thermal energy that brings the working substance to the high temperature state. The working substance generates work in the working body of the engine while transferring heat to the colder sink until it reaches a low temperature state. During this process some of the thermal energy is converted into work by exploiting the properties of the working substance. The working substance can be any system with a non-zero heat capacity, but it usually is a gas or liquid. During this process, some heat is normally lost to the surroundings and is not converted to work. Also, some energy is unusable because of friction and drag.

The following outline is provided as an overview of and topical guide to physics:

Thermodynamics branch of physics concerned with heat, work, temperature, and thermal or internal energy

Thermodynamics is the branch of physics that deals with heat and temperature, and their relation to energy, work, radiation, and properties of matter. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering, but also in fields as complex as meteorology.

Heat transfer transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

For fluid power, a working fluid is a gas or liquid that primarily transfers force, motion, or mechanical energy. In hydraulics, water or hydraulic fluid transfers force between hydraulic components such as hydraulic pumps, hydraulic cylinders, and hydraulic motors that are assembled into hydraulic machinery, hydraulic drive systems, etc. In pneumatics, air or another gas transfers force between pneumatic components such as compressors, vacuum pumps, pneumatic cylinders, and pneumatic motors. In pneumatic systems, the working gas also stores energy because it is compressible.

Energy transformation process of changing energy from one of its forms into another

Energy transformation, also known as energy conversion, is the process of changing energy from one form to another. In physics, energy is a quantity that provides the capacity to perform work or provides heat. In addition to being convertible, according to the law of conservation of energy, energy is transferable to a different location or object, but it cannot be created or destroyed.

The following outline is provided as an overview of and topical guide to energy:

Thermal science is the combined study of thermodynamics, fluid mechanics, heat transfer, and combustion.

Thermal efficiency performance measure of a device that uses thermal energy

In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, a steam turbine or a steam engine, a boiler, furnace, or a refrigerator for example. For a heat engine, thermal efficiency is the fraction of the energy added by heat that is converted to net work output. In the case of a refrigeration or heat pump cycle, thermal efficiency is the ratio of net heat output for heating, or removal for cooling, to energy input.

Applied mechanics is a branch of the physical sciences and the practical application of mechanics. Pure mechanics describes the response of bodies or systems of bodies to external forces. Some examples of mechanical systems include the flow of a liquid under pressure, the fracture of a solid from an applied force, or the vibration of an ear in response to sound. A practitioner of the discipline is known as a mechanician.

The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.

Thermal Engineering is a specialized sub-discipline of mechanical engineering that deals with the movement of heat energy and transfer. The energy can be transformed between two mediums or transferred into other forms of energy. A thermal engineer will have knowledge of thermodynamics and the process to convert generated energy from thermal sources into chemical, mechanical, or electrical energy. Many process plants use a wide variety of machines that utilize components that use heat transfer in some way. Many plants use heat exchangers in their operations. A thermal engineer must allow the proper amount of energy to be transferred for correct use. Too much and the components could fail, too little and the system will not function at all. Thermal engineers must have an understanding of economics and the components that they will be servicing or interacting with. Some components that a thermal engineer could work with include heat exchangers, heat sinks, bi-metals strips, radiators and many more. Some systems that require a thermal engineer include; Boilers, heat pumps, water pumps, engines, and more.

Energy technology is an interdisciplinary engineering science having to do with the efficient, safe, environmentally friendly and economical extraction, conversion, transportation, storage and use of energy, targeted towards yielding high efficiency whilst skirting side effects on humans, nature and the environment.

Eckehard Specht is a professor in Otto von Guericke University, Magdeburg, Germany. He belongs to Institute of Fluid Dynamics and Thermodynamics (ISUT) department. His specializations are Combustion technology, heat and mass transfer, chemical process engineering, global warming, and ceramic materials.

In engineering, physics and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered. Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others.

Measuring instrument device for measuring a physical quantity

A measuring instrument is a device for measuring a physical quantity. In the physical sciences, quality assurance, and engineering, measurement is the activity of obtaining and comparing physical quantities of real-world objects and events. Established standard objects and events are used as units, and the process of measurement gives a number relating the item under study and the referenced unit of measurement. Measuring instruments, and formal test methods which define the instrument's use, are the means by which these relations of numbers are obtained. All measuring instruments are subject to varying degrees of instrument error and measurement uncertainty. These instruments may range from simple objects such as rulers and stopwatches to electron microscopes and particle accelerators. Virtual instrumentation is widely used in the development of modern measuring instruments.

Extended discrete element method

The extended discrete element method (XDEM) is a numerical technique that extends the dynamics of granular material or particles as described through the classical discrete element method (DEM) by additional properties such as the thermodynamic state, stress/strain or electro-magnetic field for each particle. Contrary to a continuum mechanics concept, the XDEM aims at resolving the particulate phase with its various processes attached to the particles. While the discrete element method predicts position and orientation in space and time for each particle, the extended discrete element method additionally estimates properties such as internal temperature and/or species distribution or mechanical impact with structures.

Computational Fluid Dynamics (CFD) modeling and simulation for phase change materials (PCMs) is a technique to analyze the performance and behavior of PCMs. The CFD models have been successful in studying and analyzing the air quality, natural ventilation and stratified ventilation, air flow initiated by buoyancy forces and temperature space for the systems integrated with PCMs. Simple shapes like flat plates, cylinders or annular tubes,fins, macro- and micro-encapsulations with containers of different shape are often modeled in CFD software's to study.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. "Thermofluids | UBC Mechanical Engineering". mech.ubc.ca.
  2. "Cross-sector technologies - IMechE". www.imeche.org.