In chemistry, thermochemical cycles combine solely heat sources (thermo) with chemical reactions to split water into its hydrogen and oxygen components. [1] The term cycle is used because aside of water, hydrogen and oxygen, the chemical compounds used in these processes are continuously recycled.
If work is partially used as an input, the resulting thermochemical cycle is defined as a hybrid one.
This concept was first postulated by Funk and Reinstrom (1966) as a maximally efficient way to produce fuels (e.g. hydrogen, ammonia) from stable and abundant species (e.g. water, nitrogen) and heat sources. [2] Although fuel availability was scarcely considered before the oil crisis efficient fuel generation was an issue in important niche markets. As an example, in the military logistics field, providing fuels for vehicles in remote battlefields is a key task. Hence, a mobile production system based on a portable heat source (a nuclear reactor was considered) was being investigated with utmost interest. Following the oil crisis, multiple programs (Europe, Japan, United States) were created to design, test and qualify such processes for purposes such as energy independence. High-temperature (around 1,000 K (730 °C; 1,340 °F) operating temperature) nuclear reactors were still considered as the likely heat sources. However, optimistic expectations based on initial thermodynamics studies were quickly moderated by pragmatic analyses comparing standard technologies (thermodynamic cycles for electricity generation, coupled with the electrolysis of water) and by numerous practical issues (insufficient temperatures from even nuclear reactors, slow reactivities, reactor corrosion, significant losses of intermediate compounds with time...). [3] Hence, the interest for this technology faded during the next decades, [4] or at least some tradeoffs (hybrid versions) were being considered with the use of electricity as a fractional energy input instead of only heat for the reactions (e.g. Hybrid sulfur cycle). A rebirth in the year 2000 can be explained by both the new energy crisis, demand for electricity, and the rapid pace of development of concentrated solar power technologies whose potentially very high temperatures are ideal for thermochemical processes, [5] while the environmentally friendly side of thermochemical cycles attracted funding in a period concerned with a potential peak oil outcome.
Consider a system composed of chemical species (e.g. water splitting) in thermodynamic equilibrium at constant pressure and thermodynamic temperature T:
Equilibrium is displaced to the right only if energy (enthalpy change ΔH for water-splitting) is provided to the system under strict conditions imposed by thermodynamics:
Hence, for an ambient temperature T° of 298K (kelvin) and a pressure of 1 atm (atmosphere (unit)) (ΔG° and ΔS° are respectively equal to 237 kJ/mol and 163 J/mol/K, relative to the initial amount of water), more than 80% of the required energy ΔH must be provided as work in order for water-splitting to proceed.
If phase transitions are neglected for simplicity's sake (e.g. water electrolysis under pressure to keep water in its liquid state), one can assume that ΔH et ΔS do not vary significantly for a given temperature change. These parameters are thus taken equal to their standard values ΔH° et ΔS° at temperature T°. Consequently, the work required at temperature T is,
As ΔS° is positive, a temperature increase leads to a reduction of the required work. This is the basis of high-temperature electrolysis. This can also be intuitively explained graphically. Chemical species can have various excitation levels depending on the absolute temperature T, which is a measure of the thermal agitation. The latter causes shocks between atoms or molecules inside the closed system such that energy spreading among the excitation levels increases with time, and stop (equilibrium) only when most of the species have similar excitation levels (a molecule in a highly excited level will quickly return to a lower energy state by collisions) (Entropy (statistical thermodynamics)).
Relative to the absolute temperature scale, the excitation levels of the species are gathered based on standard enthalpy change of formation considerations; i.e. their stabilities. As this value is null for water but strictly positive for oxygen and hydrogen, most of the excitation levels of these last species are above the ones of water. Then, the density of the excitation levels for a given temperature range is monotonically increasing with the species entropy. A positive entropy change for water-splitting means far more excitation levels in the products. Consequently,
One can imagine that if T were high enough in Eq.(3), ΔG could be nullified, meaning that water-splitting would occur even without work (thermolysis of water). Though possible, this would require tremendously high temperatures: considering the same system naturally with steam instead of liquid water (ΔH° = 242 kJ/mol; ΔS° = 44 J/mol/K) would hence give required temperatures above 3000K, that make reactor design and operation extremely challenging. [6]
Hence, a single reaction only offers one freedom degree (T) to produce hydrogen and oxygen only from heat (though using Le Chatelier's principle would also allow to slightly decrease the thermolysis temperature, work must be provided in this case for extracting the gas products from the system)
On the contrary, as shown by Funk and Reinstrom, multiple reactions (e.g. k steps) provide additional means to allow spontaneous water-splitting without work thanks to different entropy changes ΔS°i for each reaction i. An extra benefit compared with water thermolysis is that oxygen and hydrogen are separately produced, avoiding complex separations at high temperatures. [7]
The first pre-requisites (Eqs.(4) and (5)) for multiple reactions i to be equivalent to water-splitting are trivial (cf. Hess's law):
Similarly, the work ΔG required by the process is the sum of each reaction work ΔGi:
As Eq. (3) is a general law, it can be used anew to develop each ΔGi term. If the reactions with positive (p indice) and negative (n indice) entropy changes are expressed as separate summations, this gives,
Using Eq. (6) for standard conditions allows to factorize the ΔG°i terms, yielding,
Now consider the contribution of each summation in Eq. (8): in order to minimize ΔG, they must be as negative as possible:
Finally, one can deduce from this last equation the relationship required for a null work requirement (ΔG ≤ 0)
Consequently, a thermochemical cycle with i steps can be defined as sequence of i reactions equivalent to water-splitting and satisfying equations (4), (5) and (10). The key point to remember in that case is that the process temperature TH can theoretically be arbitrary chosen (1000K as a reference in most of the past studies, for high temperature nuclear reactors), far below the water thermolysis one.
This equation can alternatively (and naturally) be derived via the Carnot's theorem, that must be respected by the system composed of a thermochemical process coupled with a work producing unit (chemical species are thus in a closed loop):
Consequently, replacing W (ΔG°) and Q (Eq.(14)) in Eq.(11) gives after reorganization Eq.(10) (assuming that the ΔSi do not change significantly with the temperature, i.e. are equal to ΔS°i)
Equation (10) has practical implications about the minimum number of reactions for such a process according to the maximum process temperature TH. [8] Indeed, a numerical application (ΔG° equals to 229 kJ/K for water considered as steam) in the case of the originally chosen conditions (high-temperature nuclear reactor with TH and T° respectively equal to 1000K and 298K) gives a minimum value around 330 J/mol/K for the summation of the positive entropy changes ΔS°i of the process reactions.
This last value is very high as most of the reactions have entropy change values below 50 J/mol/K, and even an elevated one (e.g. water-splitting from liquid water: 163 J/mol/K) is twice lower. Consequently, thermochemical cycles composed of less than three steps are practically impossible with the originally planned heat sources (below 1000K), or require "hybrid" versions
In this case, an extra freedom degree is added via a relatively small work input Wadd (maximum work consumption, Eq.(9) with ΔG ≤ Wadd), and Eq.(10) becomes,
If Wadd is expressed as a fraction f of the process heat Q (Eq.(14)), Eq.(15) becomes after reorganization,
Using a work input equals to a fraction f of the heat input is equivalent relative to the choice of the reactions to operate a pure similar thermochemical cycle but with a hot source with a temperature increased by the same proportion f.
Naturally, this decreases the heat-to-work efficiency in the same proportion f. Consequently, if one want a process similar to a thermochemical cycle operating with a 2000K heat source (instead of 1000K), the maximum heat-to-work efficiency is twice lower. As real efficiencies are often significantly lower than ideal one, such a process is thus strongly limited.
Practically, use of work is restricted to key steps such as product separations, where techniques relying on work (e.g. electrolysis) might sometimes have fewer issues than those using only heat (e.g. distillations)
According to equation (10), the minimum required entropy change (right term) for the summation of the positive entropy changes decreases when TH increases. As an example, performing the same numerical application but with TH equals to 2000K would give a twice lower value (around 140 kJ/mol), which allows thermochemical cycles with only two reactions. Such processes can be realistically coupled with concentrated solar power technologies like Solar Updraft Tower. As an example in Europe, this is the goal of the Hydrosol-2 project (Greece, Germany (German Aerospace Center), Spain, Denmark, England) [9] and of the researches of the solar department of the ETH Zurich and the Paul Scherrer Institute (Switzerland). [10]
Examples of reactions satisfying high entropy changes are metal oxide dissociations, as the products have more excitation levels due to their gaseous state (metal vapors and oxygen) than the reactant (solid with crystalline structure, so symmetry dramatically reduces the number of different excitation levels). Consequently, these entropy changes can often be larger than the water-splitting one and thus a reaction with a negative entropy change is required in the thermochemical process so that Eq.(5) is satisfied. Furthermore, assuming similar stabilities of the reactant (ΔH°) for both thermolysis and oxide dissociation, a larger entropy change in the second case explained again a lower reaction temperature (Eq.(3)).
Let us assume two reactions, with positive (1 subscript, at TH) and negative (2 subscript, at T°) entropy changes. An extra property can be derived in order to have TH strictly lower than the thermolysis temperature: The standard thermodynamic values must be unevenly distributed among the reactions . [11]
Indeed, according to the general equations (2) (spontaneous reaction), (4) and (5), one must satisfy,
Hence, if ΔH°1 is proportional to ΔH°2 by a given factor, and if ΔS°1 and ΔS°2 follow a similar law (same proportionality factor), the inequality (17) is broken (equality instead, so TH equals to the water thermolysis temperature).
Hundreds of such cycles have been proposed and investigated. This task has been eased by the availability of computers, allowing a systematic screening of chemical reactions sequences based on thermodynamic databases. [12] Only the main "families" will be described in this article. [13]
Two-step thermochemical cycles, often involving metal oxides, [14] can be divided into two categories depending on the nature of the reaction: volatile and non-volatile. Volatile cycles utilize metal species that sublime during the reduction of the metal oxides, and non-volatile cycles can be further categorized into stoichiometric cycles and non-stoichiometric cycles. During the reduction half-cycle of the stochiometric cycle, the metal oxide is reduced and forms a new metal oxide with different oxidation states (Fe3O4 → 3FeO + 1/2 O2); a non-stochiometric cycle's reduction of the metal oxide will produce vacancies, often oxygen vacancies, but the crystal structure remains stable and only a portion of the metal atoms change their oxidation state (CeO2 → CeO2-δ + δ/2 O2).
The non-stoichiometric cycles with CeO2 can be describes with the following reactions:
The reduction occurs when CeO2, or ceria, is exposed to a inert atmosphere at around 1500 °C to 1600 °C, [15] and hydrogen release occurs at 800 °C during hydrolysis when it is subjected to an atmosphere containing water vapor. One advantage of ceria over iron oxide lies in its higher melting point, which allows it to sustain higher temperature during reduction cycle. In addition, ceria's ionic conductivity allows oxygen atoms to diffuse through its structure several orders of magnitude faster than Fe ions can diffuse through iron oxide. Consequently, the redox reactions of ceria can occur at occur at a larger length scale, making it an ideal candidate for thermochemical reactor testing. Ceria-based thermochemical reactor has been created and tested as early as 2010, and viability of cycling was corroborated under realistic solar concentrating conditions. One disadvantage that limits ceria's application is its relatively lower oxygen storage capability.
The non-stoichiometric cycles with a perovskite ABO3 can be describes with the following reactions:
The reduction thermodynamics of perovskite makes it more favorable during the reduction half-cycle, during which more oxygen is produced; however, the oxidation thermodynamics proves less suitable, and sometimes perovskite is not completely oxidized. The two atomic sites, A and B, offer more doping possibilities and a much larger potential for different configurations. [16]
Due to sulfur's high covalence, it can form up to 6 chemical bonds with other elements such as oxygen, resulting in a large number of oxidation states. Thus, there exist several redox reactions involving sulfur compounds. This freedom allows numerous chemical steps with different entropy changes, increasing the odds of meeting the criteria for a thermochemical cycle.
Much of the initial research was conducted in the United States, with sulfate- and sulfide-based cycles studied at Kentucky University, [17] [18] the Los Alamos National Laboratory [19] and General Atomics. Significant research based on sulfates (e.g., FeSO4 and CuSO4) was conducted in Germany [20] and Japan. [21] [22] The sulfur-iodine cycle, discovered by General Atomics, has been proposed as a way of supplying a hydrogen economy without the need for hydrocarbons. [23]
Above 973K, the Deacon reaction is reversed, yielding hydrogen chloride and oxygen from water and chlorine:
In thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system. The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy, it is not absolute but depends on the choice of a zero point. Therefore, only relative free energy values, or changes in free energy, are physically meaningful.
In chemistry and thermodynamics, the standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements in their reference state, with all substances in their standard states. The standard pressure value p⦵ = 105 Pa(= 100 kPa = 1 bar) is recommended by IUPAC, although prior to 1982 the value 1.00 atm (101.325 kPa) was used. There is no standard temperature. Its symbol is ΔfH⦵. The superscript Plimsoll on this symbol indicates that the process has occurred under standard conditions at the specified temperature (usually 25 °C or 298.15 K).
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities of the chemical species undergoing reduction and oxidation respectively. It was named after Walther Nernst, a German physical chemist who formulated the equation.
The Nernst heat theorem was formulated by Walther Nernst early in the twentieth century and was used in the development of the third law of thermodynamics.
In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure-volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions. The Gibbs free energy is expressed asWhere:
Hess’ law of constant heat summation, also known simply as Hess' law, is a relationship in physical chemistry named after Germain Hess, a Swiss-born Russian chemist and physician who published it in 1840. The law states that the total enthalpy change during the complete course of a chemical reaction is independent of the sequence of steps taken.
In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamically stable energy state. The sign convention for free energy change follows the general convention for thermodynamic measurements, in which a release of free energy from the system corresponds to a negative change in the free energy of the system and a positive change in the free energy of the surroundings.
The standard enthalpy of reaction for a chemical reaction is the difference between total product and total reactant molar enthalpies, calculated for substances in their standard states. The value can be approximately interpreted in terms of the total of the chemical bond energies for bonds broken and bonds formed.
An exergonic process is one which there is a positive flow of energy from the system to the surroundings. This is in contrast with an endergonic process. Constant pressure, constant temperature reactions are exergonic if and only if the Gibbs free energy change is negative (∆G < 0). "Exergonic" means "releasing energy in the form of work". In thermodynamics, work is defined as the energy moving from the system to the surroundings during a given process.
High-temperature electrolysis is a technology for producing hydrogen from water at high temperatures or other products, such as iron or carbon nanomaterials, as higher energy lowers needed electricity to split molecules and opens up new, potentially better electrolytes like molten salts or hydroxides. Unlike electrolysis at room temperature, HTE operates at elevated temperature ranges depending on the thermal capacity of the material. Because of the detrimental effects of burning fossil fuels on humans and the environment, HTE has become a necessary alternative and efficient method by which hydrogen can be prepared on a large scale and used as fuel. The vision of HTE is to move towards decarbonization in all economic sectors. The material requirements for this process are: the heat source, the electrodes, the electrolyte, the electrolyzer membrane, and the source of electricity.
Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen:
The sulfur–iodine cycle is a three-step thermochemical cycle used to produce hydrogen.
An Ellingham diagram is a graph showing the temperature dependence of the stability of compounds. This analysis is usually used to evaluate the ease of reduction of metal oxides and sulfides. These diagrams were first constructed by Harold Ellingham in 1944. In metallurgy, the Ellingham diagram is used to predict the equilibrium temperature between a metal, its oxide, and oxygen — and by extension, reactions of a metal with sulfur, nitrogen, and other non-metals. The diagrams are useful in predicting the conditions under which an ore will be reduced to its metal. The analysis is thermodynamic in nature and ignores reaction kinetics. Thus, processes that are predicted to be favourable by the Ellingham diagram can still be slow.
The Van 't Hoff equation relates the change in the equilibrium constant, Keq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, ΔrH⊖, for the process. The subscript means "reaction" and the superscript means "standard". It was proposed by Dutch chemist Jacobus Henricus van 't Hoff in 1884 in his book Études de Dynamique chimique.
Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the standard pressure of 101.325 kPa, or 100 kPa. Both of these definitions for the standard condition for pressure are in use.
Nucleic acid thermodynamics is the study of how temperature affects the nucleic acid structure of double-stranded DNA (dsDNA). The melting temperature (Tm) is defined as the temperature at which half of the DNA strands are in the random coil or single-stranded (ssDNA) state. Tm depends on the length of the DNA molecule and its specific nucleotide sequence. DNA, when in a state where its two strands are dissociated, is referred to as having been denatured by the high temperature.
In thermodynamics, enthalpy–entropy compensation is a specific example of the compensation effect. The compensation effect refers to the behavior of a series of closely related chemical reactions, which exhibit a linear relationship between one of the following kinetic or thermodynamic parameters for describing the reactions:
The copper–chlorine cycle is a four-step thermochemical cycle for the production of hydrogen. The Cu–Cl cycle is a hybrid process that employs both thermochemical and electrolysis steps. It has a maximum temperature requirement of about 530 degrees Celsius.
A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas and oxygen. The production of pure hydrogen is compelling because it is a clean fuel that can be stored, making it a potential alternative to batteries, methane, and other energy sources. Electrolysis is currently the most promising method of hydrogen production from water due to high efficiency of conversion and relatively low required energy input when compared to thermochemical and photocatalytic methods.
A ceria based thermochemical cycle is a type of two-step thermochemical cycle that uses as oxygen carrier cerium oxides for synthetic fuel production such as hydrogen or syngas. These cycles are able to obtain either hydrogen from the splitting of water molecules, or also syngas, which is a mixture of hydrogen and carbon monoxide, by also splitting carbon dioxide molecules alongside water molecules. These type of thermochemical cycles are mainly studied for concentrated solar applications.