Thermotoga lettingae

Last updated

Thermotoga lettingae
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Thermotogota
Class: Thermotogae
Order: Thermotogales
Family: Thermotogaceae
Genus: Thermotoga
Species:
T. lettingae
Binomial name
Thermotoga lettingae
Balk et al. 2002

Thermotoga lettingae is a thermophilic, anaerobic, non-spore-forming, motile and Gram-negative bacterium, with type strain TMOT. [1]

Contents

Related Research Articles

A mesophile is an organism that grows best in moderate temperature, neither too hot nor too cold, with an optimum growth range from 20 to 45 °C. The term is mainly applied to microorganisms. Organisms that prefer extreme environments are known as extremophiles. Mesophiles have diverse classifications, belonging to two domains: Bacteria, Archaea, and to kingdom Fungi of domain Eucarya. Mesophiles belonging to the domain Bacteria can either be gram-positive or gram-negative. Oxygen requirements for mesophiles can be aerobic or anaerobic. There are three basic shapes of mesophiles: coccus, bacillus, and spiral.

Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product or these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H2 as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.

Thermoanaerobacter is a genus in the phylum Bacillota (Bacteria). Members of this genus are thermophilic and anaerobic, several of them were previously described as Clostridium species and members of the now obsolete genera Acetogenium and Thermobacteroides

<i>Thermotoga maritima</i>

Thermotoga maritima is a hyperthermophilic, anaerobic organism that is a member of the order Thermotogales. It employs [FeFe]-hydrogenases to produce hydrogen gas (H2) by fermenting many different types of carbohydrates.

Thermotoga neapolitana is a hyperthermophilic organism that is a member of the order Thermotogales.

Roseiflexus castenholzii is a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes.

Thermotoga hypogea is a hyperthermophilic organism that is a member of the order Thermotogales. It is thermophilic, xylanolytic, glucose-fermenting, strictly anaerobic and rod-shaped. The type strain of T. hypogea is SEBR 7054.

Pelotomaculum thermopropionicum is an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium, the type species of its genus. The type strain is strain SI(T).

Thermotoga elfii is a rod-shaped, glucose-fermenting bacterium. The type strain of T. elfii is SEBR 6459T. The genus Thermotoga was originally thought to be strictly found surrounding submarine hydrothermal vents, but this organism was subsequently isolated in African oil wells in 1995. A protective outer sheath allows this microbe to be thermophilic. This organism cannot function in the presence of oxygen making it strictly anaerobic. Some research proposes that the thiosulfate-reducing qualities in this organism could lead to decreased bio-corrosion in oil equipment in industrial settings.

Thermotoga subterranea is a thermophilic, anaerobic, non-spore-forming, motile and Gram-negative bacterium, with type strain SL1.

Thermotoga naphthophila is a hyperthermophilic, anaerobic, non-spore-forming, rod-shaped fermentative heterotroph, with type strain RKU-10T.

Fervidobacterium gondwanense is a species of thermophilic anaerobic bacteria. It is non-sporulating, motile, gram-negative, and rod-shaped.

Fervidobacterium changbaicum is a species of thermophilic anaerobic bacteria. It is non-sporulating, motile, gram-negative, and rod-shaped. The type strain is CBS-1(T).

Thermococcus stetteri is an extremely thermophilic, marine, sulfur-metabolizing archaebacterium. It is anaerobic, its cells being irregular cocci 1 to 2 μm in diameter. Of the strains first isolated, two were motile due to a tuft of flagella, while the other two strains were nonmotile. Its type strain is K-3. It can grow on starch, pectin, and peptides, but not amino acids.

Thermosyntropha lipolytica is a lipolytic, anaerobic, alkalitolerant, thermophilic bacteria. It lives in syntrophic coculture with a methanogen. Its cells are non-motile, non-spore forming, straight or slightly curved rods. Its type strain is JW/VS-265T.

Clostridium paradoxum is a moderately thermophilic anaerobic alkaliphile bacteria. It is motile with 2-6 peritrichous flagella and forms round to slightly oval terminal spores. Its type strain is JW-YL-7.

Thermosinus carboxydivorans is an anaerobic, thermophilic, Gram-negative, carbon-monoxide-oxidizing, hydrogenogenic bacterium, the type species of its genus. It is facultatively carboxydotrophic, curved, motile, rod-shaped, with a length of 2.6–3 μm, a width of about 0.5 μm and lateral flagellation. Its type strain is Nor1T.

Tepidanaerobacter is a genus of anaerobic, moderately thermophilic, syntrophic bacteria from the family Thermoanaerobacteraceae.

Caldimicrobium is a genus of bacteria from the family of Thermodesulfobacteriaceae.

Caloranaerobacter is a Gram-negative, thermophilic, anaerobic and chemoorganotrophic bacterial genus from the family of Clostridiaceae.

References

  1. Balk, M. (2002). "Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor". International Journal of Systematic and Evolutionary Microbiology. 52 (4): 1361–1368. doi:10.1099/ijs.0.02165-0. ISSN   1466-5026.

Further reading