Thomas Albrecht | |
---|---|
Born | Thomas Albrecht 1971 (age 52–53) Hershey, Pennsylvania, U.S. |
Alma mater | Northwestern University |
Known for | Chemistry and Physics of Lanthanides and Actinides, Late Actinide Chemistry, especially with berkelium, californium, einsteinium, and fermium |
Awards | ACS Glenn T. Seaborg Award for Nuclear Chemistry, ACS Nobel Signature Award for Graduate Education in Chemistry, ACS Southern Chemist Award, ACA M. J. Buerger Award |
Scientific career | |
Institutions |
|
Thomas Albrecht is an American radiochemist specializing in the chemistry and physics of transuranium elements. He is jointly appointed as a University Distinguished Professor at the Colorado School of Mines in Golden, Colorado, and Director of the Nuclear Science & Engineering Center and as a scientist at Idaho National Laboratory.
Thomas Albrecht received his undergraduate education in chemistry at Southwest Minnesota State University, during which time he also performed research at Texas A&M with J. P. Fackler on gold chemistry and Ron Caple on organometallic chemistry at the University of Minnesota-Duluth via REU-NSF programs. [1] He received his doctorate in inorganic chemistry in 1997 from Northwestern University under James Ibers where he studied the synthesis, structures, and reactivity of transition metal polychalcogenides. Following a postdoctoral position at the University of Illinois in 1998 with J. R. Shapley on metal-fullerene chemistry, he became an assistant professor at Auburn University later that year, transitioning to associate professor in 2002 and full professor in 2007. While at Auburn, he built a large program dedicated to understanding the chemistry and physics of f-block compounds. He opened the first new transuranium laboratory in decades in the U.S. while at Auburn, and continued this theme as the Frank M. Freimann Chair at the University of Notre Dame from 2009 to 2012. He moved to Florida State University in 2012 to become the first Gregory R. Choppin Chair in Chemistry. [1] In 2022 he joined the faculty at the Colorado School of Mines in Golden, Colorado, and was a part of the inaugural group of University Distinguished Professors.
Prof. Albrecht directs a research group at the Colorado School of Mines in radio- and nuclear chemistry as well as the chemistry and physics of critical materials. In 2016 he received federal funding from the U.S. Department of Energy through the Office of Basic Energy Sciences as part of the Energy Frontier Research Center program to establish the Center for Actinide Science & Technology (CAST), a multi-institution research center dedicated to advancing our understanding of how electronic structure and bonding control the properties of radioactive materials, with focus on alleviating the environmental impacts of nuclear power and the Cold War. [2] [3]
His research focuses on the use of synthetic, crystallographic, and spectroscopic techniques and quantum chemical simulation to better understand the nature of bonding and physical properties in lanthanides and actinides complexes. Prof. Albrecht is particularly known for his research on the chemistry of highly radioactive and scarce heavy actinides such as berkelium and californium. [4] [5]
In 2019 Prof. Albrecht was awarded the Glenn T. Seaborg Award in Nuclear Chemistry for outstanding contributions to nuclear and radiochemistry at the American Chemical Society meeting in Orlando, Florida. [6] The focus of this award was his group's discovery of a fundamental break in the chemistry of actinides that begins at californium. His group is responsible for the majority of transuranium single crystal structures and was the first to apply the use of microdiffraction techniques to compounds of these elements. His team was also the first to report the single crystal structure of a berkelium compound. He was in 2015 elected as a fellow of the Royal Society of Chemistry for contributions including his pioneering work on californium. [7] In 2018, Prof. Albrecht was elected a fellow of the American Association for the Advancement of Science [8] and was the preceptor for the ACS Nobel Signature Prize for Graduate Education in Chemistry. He has delivered a number of important endowed lectures throughout the world including the Gerhard and Lisolette Closs Memorial Lecture at the University of Chicago and the George Fischer Baker Lecture at Cornell University. In 2024, he was awarded the M. J. Buerger Award for contributions of exceptional distinction in areas of interest to the American Crystallographic Association.
The actinide or actinoid series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. The actinide series derives its name from the first element in the series, actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide.
Berkelium is a synthetic chemical element; it has symbol Bk and atomic number 97. It is a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the Lawrence Berkeley National Laboratory where it was discovered in December 1949. Berkelium was the fifth transuranium element discovered after neptunium, plutonium, curium and americium.
Curium is a synthetic chemical element; it has symbol Cm and atomic number 96. This transuranic actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first intentionally made by the team of Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso in 1944, using the cyclotron at Berkeley. They bombarded the newly discovered element plutonium with alpha particles. This was then sent to the Metallurgical Laboratory at University of Chicago where a tiny sample of curium was eventually separated and identified. The discovery was kept secret until after the end of World War II. The news was released to the public in November 1947. Most curium is produced by bombarding uranium or plutonium with neutrons in nuclear reactors – one tonne of spent nuclear fuel contains ~20 grams of curium.
Californium is a synthetic chemical element; it has symbol Cf and atomic number 98. It was first synthesized in 1950 at Lawrence Berkeley National Laboratory by bombarding curium with alpha particles. It is an actinide element, the sixth transuranium element to be synthesized, and has the second-highest atomic mass of all elements that have been produced in amounts large enough to see with the naked eye. It was named after the university and the U.S. state of California.
Einsteinium is a synthetic chemical element; it has symbol Es and atomic number 99. It was named in honor of Albert Einstein and is a member of the actinide series and is the seventh transuranium element.
Fermium is a synthetic chemical element; it has symbol Fm and atomic number 100. It is an actinide and the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macroscopic quantities, although pure fermium metal has not yet been prepared. A total of 20 isotopes are known, with 257Fm being the longest-lived with a half-life of 100.5 days.
Glenn Theodore Seaborg was an American chemist whose involvement in the synthesis, discovery and investigation of ten transuranium elements earned him a share of the 1951 Nobel Prize in Chemistry. His work in this area also led to his development of the actinide concept and the arrangement of the actinide series in the periodic table of the elements.
Nobelium is a synthetic chemical element; it has symbol No and atomic number 102. It is named in honor of Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transuranic element and is the penultimate member of the actinide series. Like all elements with atomic number over 100, nobelium can only be produced in particle accelerators by bombarding lighter elements with charged particles. A total of twelve nobelium isotopes are known to exist; the most stable is 259No with a half-life of 58 minutes, but the shorter-lived 255No is most commonly used in chemistry because it can be produced on a larger scale.
The transuranium elements are the chemical elements with atomic numbers greater than 92, which is the atomic number of uranium. All of them are radioactively unstable and decay into other elements. With the exception of neptunium and plutonium which have been found in trace amounts in nature, none occur naturally on Earth and they are synthetic.
Nobel Prize–winning chemist Glenn T. Seaborg ranked among the most prolific authors in scientific history. With some 50 books, 500 scientific journal articles, hundreds of published speeches, and a lifelong daily journal, a massive volume of written material is available in the Glenn T. Seaborg bibliography with a partial listing given below. Seaborg frequently collaborated with other scientists, co-authors, and staff members to achieve the productivity for which he was so well known. Although most of his writing was in the field of nuclear chemistry, history of science, science education, and science public policy, he has also collaborated on works in sports and collegiate history.
In nuclear chemistry, the actinide concept proposed that the actinides form a second inner transition series homologous to the lanthanides. Its origins stem from observation of lanthanide-like properties in transuranic elements in contrast to the distinct complex chemistry of previously known actinides. Glenn Theodore Seaborg, one of the researchers who synthesized transuranic elements, proposed the actinide concept in 1944 as an explanation for observed deviations and a hypothesis to guide future experiments. It was accepted shortly thereafter, resulting in the placement of a new actinide series comprising elements 89 (actinium) to 103 (lawrencium) below the lanthanides in Dmitri Mendeleev's periodic table of the elements.
Organoactinide chemistry is the science exploring the properties, structure, and reactivity of organoactinide compounds, which are organometallic compounds containing a carbon to actinide chemical bond.
Few compounds of californium have been made and studied. The only californium ion that is stable in aqueous solutions is the californium(III) cation. The other two oxidation states are IV (strong oxidizing agents) and II (strong reducing agents). The element forms a water-soluble chloride, nitrate, perchlorate, and sulfate and is precipitated as a fluoride, oxalate or hydroxide. If problems of availability of the element could be overcome, then CfBr2 and CfI2 would likely be stable.
Berkelium forms a number of chemical compounds, where it normally exists in an oxidation state of +3 or +4, and behaves similarly to its lanthanide analogue, terbium. Like all actinides, berkelium easily dissolves in various aqueous inorganic acids, liberating gaseous hydrogen and converting into the trivalent oxidation state. This trivalent state is the most stable, especially in aqueous solutions, but tetravalent berkelium compounds are also known. The existence of divalent berkelium salts is uncertain and has only been reported in mixed lanthanum chloride-strontium chloride melts. Aqueous solutions of Bk3+ ions are green in most acids. The color of the Bk4+ ions is yellow in hydrochloric acid and orange-yellow in sulfuric acid. Berkelium does not react rapidly with oxygen at room temperature, possibly due to the formation of a protective oxide surface layer; however, it reacts with molten metals, hydrogen, halogens, chalcogens and pnictogens to form various binary compounds. Berkelium can also form several organometallic compounds.
Californium oxychloride (CfOCl) is a radioactive salt first discovered in measurable quantities in 1960. It is composed of a single californium cation and oxychloride consisting of one chloride and one oxide anion. It was the first californium compound ever isolated.
Omar K. Farha is the Charles E. and Emma H. Morrison Professor in Chemistry at Northwestern University, an Executive Editor for ACS Applied Materials & Interfaces, and President of Numat.
Robert Guillaumont is a French chemist and honorary professor at the University of Paris-Saclay in Orsay (1967-1998), Member of the French Academy of Sciences and the French Academy of Technologies
A phosphate phosphite is a chemical compound or salt that contains phosphate and phosphite anions (PO33- and PO43-). These are mixed anion compounds or mixed valence compounds. Some have third anions.
Berkelium(IV) oxide, also known as berkelium dioxide, is a chemical compound with the formula BkO2. This compound slowly decays to californium(IV) oxide. It can be converted to berkelium(III) oxide by hydrogen reduction at 600 °C.
Einsteinium compounds are compounds that contain the element einsteinium (Es). These compounds largely have einsteinium in the +3 oxidation state, or in some cases in the +2 and +4 oxidation states. Although einsteinium is relatively stable, with half-lives ranging from 20 days upwards, these compounds have not been studied in great detail.