Thorium Energy Alliance

Last updated

Thorium Energy Alliance
Formation2009 Washington, D.C., United States
TypeNon-governmental organization
PurposeEducational, Sustainable Energy
Headquarters Harvard, Illinois
Region served
Worldwide
Executive Director
John Kutsch
Website www.thoriumenergyalliance.com
RemarksSee article for more details.

Thorium Energy Alliance (TEA) is a non-governmental, non-profit 501(c)3, educational organization based in the United States, which seeks to promote energy security of the world through the use of thorium as a fuel source. The potential for the use of thorium was studied extensively during the 1950s and 60s, [1] and now worldwide interest is being revived due to limitations and issues concerning safety, economics, use and issues in the availability of other energy sources. [2] [3] [4] [5] [6] [7] TEA advocates thorium based nuclear power in existing reactors and primarily in next generation reactors. TEA promotes many initiatives to educate scientists, engineers, government officials, policymakers and the general public. [8]

Contents

Energy crisis and the role of thorium

TEA promotes the use of thorium using a different rationale. Increasing world population, [9] depleting resources [10] and global warming have put severe constraints on the choices of power generation available today. [11] Traditional fossil fuel based energy generation faces two-fold challenges in terms of depleting resources and need to keep greenhouse gas emissions in control. [12] While interim measures like natural gas and unconventional oil are proposed, these still have a carbon footprint and are not universally available. [13] Hydropower use has reached a natural limit in many parts of the world, and the existing capacity is under stress due to climate change. [14] Renewable energy is seen as an important component of future energy generation, but being essentially intermittent, can not be effectively managed by the current power distribution technologies. [15] Hence, nuclear energy is seen as an important option for power generation in many countries. [16]

Present generation nuclear reactors are all uranium based, fueled with either freshly mined uranium or recycled plutonium and uranium as the fissile material. There are concerns about a continued supply of uranium, due to resource depletion, as well as various obstacles to mining uranium deposits. [17] Moreover, the currently widely deployed nuclear reactors harness less than 3% of the energy content of uranium fuel. This technology, in turn, leaves large quantities of radioactive wastes to be disposed of safely. The issue of disposal of these wastes has not been addressed convincingly anywhere in the world. Moreover, a vast majority of the present generation reactors are based on the original design of reactors meant to power submarines, and whose safety is ensured by several active features and standard operating practices. Under various circumstances, these features and procedures were seen to fail, bringing about catastrophic consequences. Highly enriched uranium and separated plutonium are also the feedstock for nuclear weapons.

Thorium has been proposed as a clean, safe, proliferation resistant and sustainable source of energy which additionally is free from most of the issues associated with uranium. [18] [19] The average crustal abundance of thorium is four times more than that of uranium. Thorium is invariably associated with rare-earth elements or rare metals like niobium, tantalum and zirconium. Hence, it can be recovered as a by-product of other mining activities. Already, large quantities of thorium recovered from rare-earth element operations have been stockpiled in many countries. Thorium is fertile material, and essentially all thorium can be used in a nuclear reactor. Thorium is not fissile in itself, absorbs a neutron to transmute into uranium-233, which can fission to produce energy. Therefore, a thorium based fuel cycle produces very little, easily manageable waste compared to uranium. [20] Thorium based fuel cycle options can be used to 'burn' all the presently accumulated nuclear waste. Various thorium based reactor designs are inherently more safe than uranium based reactors. [21] However nuclear proliferation using thorium has proven to be extremely difficult and non-practical, although proof-of-concepts of the contrary also have been proposed. [22]

Despite all the favorable factors, and use in commercial reactors in the past, [23] [24] interest in thorium diminished in the late 1980s due to various reasons. Critics of thorium claim that the advantages are overstated and it is unlikely to be a useful source of energy. Experts point the adverse economics and the availability of plentiful sources of energy that will deter full commercialization of thorium based energy. These and other issues regarding the use of thorium have been debated. [25] [26] [27] [28]

Advocacy for thorium

One of the stated objectives of TEA is the vigorous advocacy for use of thorium as a nuclear fuel. TEA through its activities reaches out to scientists, engineers, government official, policymakers, and lawmakers to sensitize about the advantages of using thorium as a fuel. TEA has conducted a number of publicity campaigns and social media based outreach activities. TEA has emphasized the research and development done in the USA during the 1950s to 1970s period on thorium based reactor designs and fuel cycle options. Of particular interest was the Molten-Salt Reactor Experiment (MSRE) carried out at Oak Ridge National Laboratory, the United States during 1964–1969. [29] [30]

TEA argues the importance of enabling thorium energy, especially in liquid fluoride thorium reactor (LFTR pronounced lifter), in public hearings, such as the Blue Ribbon Commission on America's Nuclear Future. [31] TEA promotes the establishment of a working thorium powered reactor. TEA is particularly interested in restarting the homogeneous fuels research program and the commercialization of molten salt reactor [32] and the supply chain infrastructure to support it. [33]

Another aim of TEA is supporting the reemergence of a Western Rare Earths Infrastructure by bringing together rare-earth producers leading to the establishment of a consortium for refining rare earths and sequestering thorium for future use. [34] TEA supports changes in existing thorium regulation in the US to promote safe production and stockpiling of thorium as a by-product of associated mineral industries activity.

Activities

TEA proposes to leverage education and training activities by:

TEA plans to engage politicians through round-table discussions and provide them with expert opinion, white papers, executive summaries and talking points to demonstrate thorium technology. [35]

There is a major initiative to engage the public through regular and social media channels. TEA facilitates experts to appear on radio and television and participate in group discussions and provide interviews. In this direction TEA generates a large quantity of its own media including, webcasts, podcasts, videos, pamphlets, [36] books and articles. TEA sponsors advertising campaigns in print, television and targeted mail.

Thorium Energy Alliance has supported a dozen research projects at the Nanotechnology Lab at University of Missouri St Louis (UMSL), which is located in an Economic Opportunity Zone.

Thorium Energy Alliance has supported Outreach to youth through stem-based organizations such as Generation Atomic, North American Young Generation in Nuclear, and Mothers for Nuclear, encouraging young people to get involved in the industry.

The Thorium Energy Alliance website has added resources for international organizations and National Labs in the USA as well as industry and Military.The website acts as a resource and an encyclopedia for the history and applications of thorium as well as or repository of all of conference information and related papers and topical documents.

Thorium Energy Alliance has offered Techno-Economic support for the development of nuclear medicines, such as Bismuth and Actinium, derived from Thorium extraction processes.

Thorium Energy Alliance has worked with Rare Earth organizations and the critical minerals institute (CMI) to solve the critical materials issues in the United States and the Western world by providing thorium policy guidance with the goal to allow a new domestic Rare Earth Metals industry to start.

The Government of El Salvador and Thorium Energy Alliance have signed a Memorandum of Understanding to promote the "El Salvador Energy Bridge" plan for clean energy through thorium. [37] The document was signed by Daniel Alvarez, Director General of Energy, Hydrocarbons and Mines (DGEHM), and John Kutsch, Executive Director of Thorium Energy Alliance, at the Embassy of El Salvador in Washington D.C., with Ambassador Milena Mayorga as a witness of honor.

In the future, TEA plans to track the milestones in the creation of a thorium economy. One of the proposed methods will be to create a thorium and related technology stock portfolio and a Thorium ETF, which will allow the public to track and participate in the growing value of the thorium economy. [38]

Annual conferences

TEA organizes regular annual conferences since 2009, where scientific sessions and cross-cutting energy and fuel management discussions bring together a cross-section of interested domain experts. [39] The inaugural conference in 2009 took place in Washington, D.C., followed by California (2010), Washington, D.C. (2011), and Chicago (2012). The 2013 annual conference was held in Chicago, May 30–31.

The tenth conference, TEAC10, was held at the Pollard Technology Conference Center in Oak Ridge, Tennessee, on October 1, 2019.

The eleventh conference, TEAC11, will be held on October 13–15 2022 in Albuquerque, New Mexico, at the national nuclear energy Museum in Albuquerque. TEA has sponsored the production of a new exhibit on thorium energy and advanced reactors.  The conference is being put on with participation of the University of New Mexico, Abilene Christian University Nuclear Department, the nuclear museum, and the support of several of the startups that TEA has assisted with technological support and policy information.

See also

Related Research Articles

<span class="mw-page-title-main">Nuclear reactor</span> Device used to initiate and control a nuclear chain reaction

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of 2022, the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world.

<span class="mw-page-title-main">Nuclear power</span> Power generated from nuclear reactions

Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium in nuclear power plants. Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators in some space probes such as Voyager 2. Generating electricity from fusion power remains the focus of international research.

<span class="mw-page-title-main">Thorium</span> Chemical element, symbol Th and atomic number 90

Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive gray when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high melting point. Thorium is an electropositive actinide whose chemistry is dominated by the +4 oxidation state; it is quite reactive and can ignite in air when finely divided.

<span class="mw-page-title-main">Nuclear fuel cycle</span> Process of manufacturing and consuming nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

<span class="mw-page-title-main">Nuclear power plant</span> Thermal power station where the heat source is a nuclear reactor

A nuclear power plant (NPP) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. As of September 2023, the International Atomic Energy Agency reported there were 410 nuclear power reactors in operation in 31 countries around the world, and 57 nuclear power reactors under construction.

<span class="mw-page-title-main">Breeder reactor</span> Nuclear reactor generating more fissile material than it consumes

A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be fueled with more-commonly available isotopes of uranium and thorium, such as uranium-238 and thorium-232, as opposed to the rare uranium-235 which is used in conventional reactors. These materials are called fertile materials since they can be bred into fuel by these breeder reactors.

<span class="mw-page-title-main">Molten salt reactor</span> Type of nuclear reactor cooled by molten material

A molten salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a mixture of molten salt with a fissionable material.

<span class="mw-page-title-main">Bhabha Atomic Research Centre</span> Nuclear research facility in Mumbai, India

The Bhabha Atomic Research Centre (BARC) is India's premier nuclear research facility, headquartered in Trombay, Mumbai, Maharashtra, India. It was founded by Homi Jehangir Bhabha as the Atomic Energy Establishment, Trombay (AEET) in January 1954 as a multidisciplinary research program essential for India's nuclear program. It operates under the Department of Atomic Energy (DAE), which is directly overseen by the Prime Minister of India.

Uranium-233 is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a reactor fuel. It has been used successfully in experimental nuclear reactors and has been proposed for much wider use as a nuclear fuel. It has a half-life of 160,000 years.

Generation IVreactors are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) – an international organization that coordinates the development of generation IV reactors – specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost. The first commercial Gen IV plants are not expected before 2040–2050, although the World Nuclear Association in 2015 suggested that some might enter commercial operation before 2030.

<span class="mw-page-title-main">Thorium fuel cycle</span> Nuclear fuel cycle

The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, 232
Th
, as the fertile material. In the reactor, 232
Th
is transmuted into the fissile artificial uranium isotope 233
U
which is the nuclear fuel. Unlike natural uranium, natural thorium contains only trace amounts of fissile material, which are insufficient to initiate a nuclear chain reaction. Additional fissile material or another neutron source is necessary to initiate the fuel cycle. In a thorium-fuelled reactor, 232
Th
absorbs neutrons to produce 233
U
. This parallels the process in uranium breeder reactors whereby fertile 238
U
absorbs neutrons to form fissile 239
Pu
. Depending on the design of the reactor and fuel cycle, the generated 233
U
either fissions in situ or is chemically separated from the used nuclear fuel and formed into new nuclear fuel.

The advanced heavy-water reactor (AHWR) or AHWR-300 is the latest Indian design for a next-generation nuclear reactor that burns thorium in its fuel core. It is slated to form the third stage in India's three-stage fuel-cycle plan. This phase of the fuel cycle plan was supposed to be built starting with a 300MWe prototype in 2016.

<span class="mw-page-title-main">Uranium mining</span> Process of extraction of uranium ore from the ground

Uranium mining is the process of extraction of uranium ore from the ground. Over 50 thousand tons of uranium were produced in 2019. Kazakhstan, Canada, and Australia were the top three uranium producers, respectively, and together account for 68% of world production. Other countries producing more than 1,000 tons per year included Namibia, Niger, Russia, Uzbekistan, the United States, and China. Nearly all of the world's mined uranium is used to power nuclear power plants. Historically uranium was also used in applications such as uranium glass or ferrouranium but those applications have declined due to the radioactivity of uranium and are nowadays mostly supplied with a plentiful cheap supply of depleted uranium which is also used in uranium ammunition. In addition to being cheaper, depleted uranium is also less radioactive due to a lower content of short-lived 234
U
and 235
U
than natural uranium.

<span class="mw-page-title-main">Nuclear power in China</span> Overview of nuclear power in China

China is one of the world's largest producers of nuclear power. The country ranks third in the world both in total nuclear power capacity installed and electricity generated, accounting for around one tenth of global nuclear power generated. As of February 2023, China has 55 plants with 57GW in operation, 22 under construction with 24 GW and more than 70 planned with 88GW. About 5% of electricity in the country is due to nuclear energy. These plants generated 417 TWh of electricity in 2022 This is versus the September 2022 numbers of 53 nuclear reactors, with a total capacity of 55.6 gigawatt (GW). In 2019, nuclear power had contributed 4.9% of the total Chinese electricity production, with 348.1 TWh.

Nuclear power is the fifth-largest source of electricity in India after coal, gas, hydroelectricity and wind power. As of November 2020, India has 22 nuclear reactors in operation in 8 nuclear power plants, with a total installed capacity of 7,380 MW. Nuclear power produced a total of 43 TWh in 2020–21, contributing 3.11% of total power generation in India. 10 more reactors are under construction with a combined generation capacity of 8,000 MW.

<span class="mw-page-title-main">Liquid fluoride thorium reactor</span> Type of nuclear reactor that uses molten material as fuel

The liquid fluoride thorium reactor is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based molten (liquid) salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine.

<span class="mw-page-title-main">India's three-stage nuclear power programme</span> Indias nuclear energy progamme envisioned by Homi J. Bhabha

India's three-stage nuclear power programme was formulated by Homi Bhabha, the well-known physicist, in the 1950s to secure the country's long term energy independence, through the use of uranium and thorium reserves found in the monazite sands of coastal regions of South India. The ultimate focus of the programme is on enabling the thorium reserves of India to be utilised in meeting the country's energy requirements. Thorium is particularly attractive for India, as India has only around 1–2% of the global uranium reserves, but one of the largest shares of global thorium reserves at about 25% of the world's known thorium reserves. However, thorium is more difficult to use than uranium as a fuel because it requires breeding, and global uranium prices remain low enough that breeding is not cost effective.

Whether nuclear power should be considered a form of renewable energy is an ongoing subject of debate. Statutory definitions of renewable energy usually exclude many present nuclear energy technologies, with the notable exception of the state of Utah. Dictionary-sourced definitions of renewable energy technologies often omit or explicitly exclude mention of nuclear energy sources, with an exception made for the natural nuclear decay heat generated within the Earth.

<span class="mw-page-title-main">Thorium-based nuclear power</span> Nuclear energy extracted from thorium isotopes

Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium. A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle—including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced nuclear waste production. One advantage of thorium fuel is its low weaponization potential; it is difficult to weaponize the uranium-233/232 and plutonium-238 isotopes that are largely consumed in thorium reactors.

References

  1. Seaborg, Glenn T. (1962), Civilian nuclear power: A report to the President (PDF), Washington, D.C.: U.S. Atomic Energy Commission, p. 67, archived from the original (PDF) on March 30, 2014, retrieved January 9, 2013
  2. Farrimond, Sturat (March 24, 2011). "The Future of Nuclear Power after Fukushima: Thorium Reactors?". Doctor Stu's Blog. Retrieved January 9, 2013.
  3. McMahon, Jeff (February 3, 2012). "UK Parliament Group to Study Thorium Reactors". Forbes. Retrieved January 9, 2013.
  4. Halper, Mark (June 26, 2012). "U.S. partners with China on new nuclear". Smart Planet. Retrieved January 9, 2013.
  5. "Russia, India to develop new-generation nuclear reactors". Voice of Russia. December 21, 2010. Archived from the original on January 18, 2013. Retrieved January 9, 2013.
  6. Evans-Pritchard, Ambrose (January 6, 2013). "China blazes trail for 'clean' nuclear power from thorium". The Telegraph. Retrieved January 9, 2013.
  7. "India set to tap thorium as nuclear fuel". The Hindu. January 30, 2013. Retrieved February 3, 2013.
  8. Curwin, Trevor (December 21, 2010). "New Power Source For Nuclear Plants in the Wings". CNBC. Retrieved January 9, 2013.
  9. "Booming nations 'threaten Earth'". BBC. January 12, 2006. Retrieved January 9, 2013.
  10. Howden, Daniel (June 14, 2007). "World oil supplies are set to run out faster than expected, warn scientists". The Independent. Retrieved January 9, 2013.
  11. Biello, David (October 27, 2011). "Another Inconvenient Truth: The World's Growing Population Poses a Malthusian Dilemma". Scientific American. Retrieved January 9, 2013.
  12. Porter, Adam (June 10, 2005). "'Peak oil' enters mainstream debate". BBC. Retrieved January 9, 2013.
  13. Bilek, Marcela; Hardy, Clarence; Lenzen, Manfred; Dey, Christopher (2008). "Life-cycle energy balance and greenhouse gas emissions of nuclear energy: A review" (PDF). SLS – USydUSyd-ISApubspandora-archive Energy Conversion & Management. 49 (8): 2178–2199. Retrieved January 9, 2013.{{cite journal}}: External link in |journal= (help)
  14. Urban, Frauke and Mitchell, Tom (2011). Climate change, disasters and electricity generation Archived January 9, 2012, at the Wayback Machine . London: Overseas Development Institute and Institute of Development Studies
  15. Nicola, Stefan (December 12, 2012). "German Power Grid Seen Needing $55 Billion on Renewables". Bloomberg News. Archived from the original on January 15, 2013. Retrieved January 9, 2013.
  16. Dean, Tim (April 2006). "New age nuclear". Cosmos Magazine (8). Archived from the original on November 12, 2012. Retrieved January 9, 2013.
  17. Dikshit, Sandeep (March 9, 2010). "Revive R&D in thorium, says India". The Hindu. Retrieved January 9, 2013.
  18. Hargraves, Robert; Moir, Ralph (July–August 2010). "Liquid Fluoride Thorium Reactors" (PDF). American Scientist. 98 (4): 304–313. doi:10.1511/2010.85.304. Archived from the original (PDF) on February 26, 2017. Retrieved January 9, 2013.
  19. Sorensen, Kirk (March 16, 2010). "Thinking Nuclear? Think Thorium". Machine Design. Retrieved January 9, 2013.
  20. Thompson, John (February 22, 2010). "Could the Clean Energy We Need Be Right Under Our Feet?". GQ Magazine. Retrieved January 9, 2013.
  21. Shiga, David (March 23, 2011). "Thorium reactors could rescue nuclear power". New Scientist (2805): 8–10.
  22. Ashley Stephen F.; Parks; Geoffrey T.; Nuttall; William J.; Boxall; Colin & Grimes; Robin W. (December 6, 2012). "Nuclear energy: Thorium fuel has risks". Nature. 492 (7427): 31–33. Bibcode:2012Natur.492...31A. doi: 10.1038/492031a . PMID   23222590. S2CID   4414368.
  23. Adams, Rod (October 1, 1995). "Light Water Breeder Reactor: Adapting A Proven System". Atomic Insights. Archived from the original on October 28, 2012. Retrieved January 17, 2013.
  24. World Nuclear Association (October 1, 1995). "Thorium". Archived from the original on February 16, 2013. Retrieved January 17, 2013.
  25. Edwards, Gordon (July 13, 2011). "Thorium Reactors: Back to the Dream Factory". Canadian Coalition for Nuclear Responsibility. Retrieved January 11, 2013.
  26. Makhijani, Arjun; Boyd, Michele (2009). "Thorium Fuel: No Panacea for Nuclear Power" (PDF). Institute for Energy and Environmental Research and Physicians for Social Responsibility. Retrieved February 3, 2013.
  27. Cannara, Alexander (May 12, 2010). "IEER/PSR Thorium "Fact Sheet" Rebuttal". Energy from Thorium. Retrieved February 3, 2013.
  28. Sorensen, Kirk (March 23, 2011). "Sorensen Rebuttal of IEER/PSR Thorium". Energy from Thorium. Retrieved February 3, 2013.
  29. Thompson, Kalee (June 27, 2011). "Concepts & Prototypes: Two Next-Gen Nukes". Popular Science. Retrieved January 9, 2013.
  30. LeBlanc, David (May 2010). "Too Good to Leave on the Shelf". Mechanical Engineering. 132 (5): 29–33. doi: 10.1115/1.2010-May-2 . Retrieved January 9, 2013.
  31. Kutsch, John (September 8, 2010). TEA Resources. Washington, D.C.: Thorium Energy Alliance.
  32. Niiler, Eric (February 29, 2012). "Nuclear power entrepreneurs push thorium as a fuel". The Washington Post. Archived from the original on October 1, 2013. Retrieved January 17, 2013.
  33. Martin, Richard (December 21, 2009). "Uranium Is So Last Century – Enter Thorium, the New Green Nuke". Wired. Vol. 18, no. 1. Retrieved January 9, 2013.
  34. Bond, Christopher S. (2010), Brazil and U.S. Initiative on Rare Earths (PDF), Washington D.C., archived from the original (PDF) on November 4, 2011, retrieved January 9, 2013{{citation}}: CS1 maint: location missing publisher (link)
  35. Cannara, Alex (2010), Grand Challenges (PDF), archived from the original (PDF) on November 4, 2011, retrieved January 9, 2013
  36. Liquid Fluoride Thorium Reactor Fact Sheet (PDF), Thorium Energy Alliance, archived from the original (PDF) on October 19, 2011, retrieved January 9, 2013
  37. El Salvador picks thorium for part of its energy future, ANS
  38. Objectives, Needs, and Next Steps for a Thorium Alliance, Thorium Energy Alliance
  39. Jacoby, Mitch (November 16, 2009). "Reintroducing Thorium". Chemical & Engineering News. ISSN   0009-2347 . Retrieved January 9, 2013.

Further reading