Thought recording and reproduction device

Last updated

A thought recording and reproduction device refers to any machine which is able to both directly record and reproduce, via a brain-computer interface, the thoughts, emotions, dreams or other neural/cognitive events of a subject for that or other subjects to experience. While currently residing within mostly fictional displays of the capacity of such devices, the idea has received increased scientific currency since the development of the first BCI-enabled devices.

Contents

The term oneirography, referring to the recording of dreams, is also a synonym for the above

Fiction

This hypothetical technology is a key element in some of the early short stories of William Gibson, including his 1977 debut Fragments of a Hologram Rose, where it is called ASP (Apparent Sensory Perception). In his Sprawl trilogy, it is termed Simstim (Simulation Stimulation), and described as the most popular form of entertainment, perhaps equivalent to 20th century pop music. Whereas most instances depict a heavily edited documentary version, replaying an approximation of the actual experience of the person recorded, in The Winter Market a version able to record dreams and imaginations exists.

A number of films from the 1980s onwards, such as Brainstorm (1983), Until the End of the World (1991), Strange Days (1995), Final Fantasy: The Spirits Within (2001), and Sleep Dealer (2008), depict the technology and its ramifications.

Research

In December 2008, Advanced Telecommunications Research Institute International's Department of Cognitive Neuroscience announced its own research into the translation of neural signals into images. [1] In addition, Dr. Moran Cerf of UCLA published a 2010 paper for Nature which claimed that he and other fellow researchers were on the cusp of being able to allow psychologists to interpret thoughts by corroborating people's recollections of their dream with an electronic visualization of their brain activity. [2] [3] The research outcome has often been popularized as a device that could record dreams. However, Moran Cerf says he never made that claim and only said that such a device is a theoretical possibility. [4]

Current limitations

BCI devices currently are able to translate a limited subset of neural signals into digital signals, most of which are utilized for motor-centric controls of attached devices. The translation of images which are perceived or conceived within the brain has not yet been fully achieved.

See also

Related Research Articles

Cognitive science Interdisciplinary scientific study of the mind and its processes

Cognitive science is the interdisciplinary, scientific study of the mind and its processes. It examines the nature, the tasks, and the functions of cognition. Cognitive scientists study intelligence and behavior, with a focus on how nervous systems represent, process, and transform information. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

Functional neuroimaging

Functional neuroimaging is the use of neuroimaging technology to measure an aspect of brain function, often with a view to understanding the relationship between activity in certain brain areas and specific mental functions. It is primarily used as a research tool in cognitive neuroscience, cognitive psychology, neuropsychology, and social neuroscience.

A brain–computer interface (BCI), sometimes called a neural control interface (NCI), mind–machine interface (MMI), direct neural interface (DNI), or brain–machine interface (BMI), is a direct communication pathway between an enhanced or wired brain and an external device. BCIs are often directed at researching, mapping, assisting, augmenting, or repairing human cognitive or sensory-motor functions.

BrainGate is a brain implant system built and previously owned by Cyberkinetics, currently under development and in clinical trials, designed to help those who have lost control of their limbs, or other bodily functions, such as patients with amyotrophic lateral sclerosis (ALS) or spinal cord injury. The Braingate technology and related Cyberkinetic’s assets are now owned by privately held Braingate, Co. The sensor, which is implanted into the brain, monitors brain activity in the patient and converts the intention of the user into computer commands.

Brain implant Device that connects to a brain

Brain implants, often referred to as neural implants, are technological devices that connect directly to a biological subject's brain – usually placed on the surface of the brain, or attached to the brain's cortex. A common purpose of modern brain implants and the focus of much current research is establishing a biomedical prosthesis circumventing areas in the brain that have become dysfunctional after a stroke or other head injuries. This includes sensory substitution, e.g., in vision. Other brain implants are used in animal experiments simply to record brain activity for scientific reasons. Some brain implants involve creating interfaces between neural systems and computer chips. This work is part of a wider research field called brain–computer interfaces.

Neuroprosthetics is a discipline related to neuroscience and biomedical engineering concerned with developing neural prostheses. They are sometimes contrasted with a brain–computer interface, which connects the brain to a computer rather than a device meant to replace missing biological functionality.

Neural binding

Neural binding is the neuroscientific aspect of what is commonly known as the binding problem: the interdisciplinary difficulty of creating a comprehensive and verifiable model for the unity of consciousness. "Binding" refers to the integration of highly diverse neural information in the forming of one's cohesive experience. The neural binding hypothesis states that neural signals are paired through synchronized oscillations of neuronal activity that combine and recombine to allow for a wide variety of responses to context-dependent stimuli. These dynamic neural networks are thought to account for the flexibility and nuanced response of the brain to various situations. The coupling of these networks is transient, on the order of milliseconds, and allows for rapid activity.

Neuroimaging Set of techniques to measure and visualize aspects of the nervous system

Neuroimaging or brain imaging is the use of various techniques to either directly or indirectly image the structure, function, or pharmacology of the nervous system. It is a relatively new discipline within medicine, neuroscience, and psychology. Physicians who specialize in the performance and interpretation of neuroimaging in the clinical setting are neuroradiologists. Neuroimaging falls into two broad categories:

In neuroscience, single-unit recordings provide a method of measuring the electro-physiological responses of a single neuron using a microelectrode system. When a neuron generates an action potential, the signal propagates down the neuron as a current which flows in and out of the cell through excitable membrane regions in the soma and axon. A microelectrode is inserted into the brain, where it can record the rate of change in voltage with respect to time. These microelectrodes must be fine-tipped, low-impedance conductors; they are primarily glass micro-pipettes, metal microelectrodes made of platinum, tungsten, iridium or even iridium oxide. Microelectrodes can be carefully placed close to the cell membrane, allowing the ability to record extracellularly.

Neuroergonomics is the application of neuroscience to ergonomics. Traditional ergonomic studies rely predominantly on psychological explanations to address human factors issues such as: work performance, operational safety, and workplace-related risks. Neuroergonomics, in contrast, addresses the biological substrates of ergonomic concerns, with an emphasis on the role of the human nervous system.

Mu wave Synchronized patterns of electrical activity in the part of the brain that controls voluntary movement

The sensorimotor mu rhythm, also known as mu wave, comb or wicket rhythms or arciform rhythms, are synchronized patterns of electrical activity involving large numbers of neurons, probably of the pyramidal type, in the part of the brain that controls voluntary movement. These patterns as measured by electroencephalography (EEG), magnetoencephalography (MEG), or electrocorticography (ECoG), repeat at a frequency of 7.5–12.5 Hz, and are most prominent when the body is physically at rest. Unlike the alpha wave, which occurs at a similar frequency over the resting visual cortex at the back of the scalp, the mu rhythm is found over the motor cortex, in a band approximately from ear to ear. A person suppresses mu rhythms when he or she performs a motor action or, with practice, when he or she visualizes performing a motor action. This suppression is called desynchronization of the wave because EEG wave forms are caused by large numbers of neurons firing in synchrony. The mu rhythm is even suppressed when one observes another person performing a motor action or an abstract motion with biological characteristics. Researchers such as V. S. Ramachandran and colleagues have suggested that this is a sign that the mirror neuron system is involved in mu rhythm suppression, although others disagree.

Brain-reading or thought identification uses the responses of multiple voxels in the brain evoked by stimulus then detected by fMRI in order to decode the original stimulus. Advances in research have made this possible by using human neuroimaging to decode a person's conscious experience based on non-invasive measurements of an individual's brain activity. Brain reading studies differ in the type of decoding employed, the target, and the decoding algorithms employed.

NeuroSky, Inc. is a manufacturer of brain-computer interface (BCI) technologies for consumer product applications, which was founded in 2004 in Silicon Valley, California. The company adapts electroencephalography (EEG) and electromyography (EMG) technology to fit a consumer market within a number of fields such as entertainment, education, automotive, and health.

There are various consumer brain-computer interfaces available for sale. These are devices that generally use an electroencephalography (EEG) headset to pick up EEG signals, a processor that cleans up and amplifies the signals, and converts them into desired signals, and some kind of output device.

Electroencephalography Electrophysiological monitoring method to record electrical activity of the brain

Electroencephalography (EEG) is an electrophysiological monitoring method to record electrical activity on the scalp that has been shown to represent the macroscopic activity of the surface layer of the brain underneath. It is typically non-invasive, with the electrodes placed along the scalp. Electrocorticography, involving invasive electrodes, is sometimes called intracranial EEG.

Imagined speech is thinking in the form of sound – “hearing” one’s own voice silently to oneself, without the intentional movement of any extremities such as the lips, tongue, or hands. Logically, imagined speech has been possible since the emergence of language, however, the phenomenon is most associated with its investigation through signal processing and detection within electroencephalograph (EEG) data as well as data obtained using alternative non-invasive, brain–computer interface (BCI) devices.

Brain technology, or self-learning know-how systems, defines a technology that employs latest findings in neuroscience. [see also neuro implants] The term was first introduced by the Artificial Intelligence Laboratory in Zurich, Switzerland, in the context of the Roboy project. Brain Technology can be employed in robots, know-how management systems and any other application with self-learning capabilities. In particular, Brain Technology applications allow the visualization of the underlying learning architecture often coined as “know-how maps”.

Stentrode is a small stent-mounted electrode array that is permanently implanted into a blood vessel in the brain without the need for open brain surgery. It is in clinical trials as a brain–computer interface (BCI) for people with paralyzed or missing limbs, who will use their neural signals or thoughts to control external devices, which currently include computer operating systems. The device may ultimately be used to control powered exoskeletons, robotic prosthesis, computers or other devices.

A cortical implant is a subset of neuroprosthetics that is in direct connection with the cerebral cortex of the brain. By directly interfacing with different regions of the cortex, the cortical implant can provide stimulation to an immediate area and provide different benefits, depending on its design and placement. A typical cortical implant is an implantable microelectrode array, which is a small device through which a neural signal can be received or transmitted.

Moran Cerf French-Israeli neuroscientist and business professor

Moran Cerf is an Israeli neuroscientist, assistant professor of business, investor and a former white hat hacker.

References

  1. Biever, Celeste (12 December 2008). "'Mind-reading' software could record your dreams". New Scientist.
  2. Ghosh, Pallab (27 October 2010). "Dream recording device 'possible' researcher claims". BBC News.
  3. Cerf, Moran; Thiruvengadam, Nikhil; Mormann, Florian; et al. (28 October 2010). "On-line, voluntary control of human temporal lobe neurons". Nature. 467 (7319): 1104–1108. doi:10.1038/nature09510. PMC   3010923 . PMID   20981100.
  4. Cerf, Moran (24 August 2012). The Moth Presents Moran Cerf: On Human (and) Nature. The Moth. YouTube.