Tibor Juhasz

Last updated
Juhasz, Tibor; Kastis, George A.; Suárez, Carlos; Bor, Zsolt; Bron, Walter E. (1996). "Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water". Lasers in Surgery and Medicine. 19 (1): 23–31. doi:10.1002/(SICI)1096-9101(1996)19:1<23::AID-LSM4>3.0.CO;2-S. PMID   8836993. S2CID   23193533.
  • Juhasz, T.; Loesel, F.H.; Kurtz, R.M.; Horvath, C.; Bille, J.F.; Mourou, G. (1999). "Corneal refractive surgery with femtosecond lasers". IEEE Journal of Selected Topics in Quantum Electronics. 5 (4): 902–910. Bibcode:1999IJSTQ...5..902J. doi:10.1109/2944.796309.
  • Ratkay-Traub, Imola; Ferincz, Istvan E; Juhasz, Tibor; Kurtz, Ron M; Krueger, Ronald R (March 2003). "First Clinical Results With the Femtosecond Neodynium-glass Laser in Refractive Surgery". Journal of Refractive Surgery. 19 (2): 94–99. doi:10.3928/1081-597X-20030301-03. PMID   12701713.
  • Nordan, Lee T; Slade, Stephen G; Baker, Richard N; Suarez, Carlos; Juhasz, Tibor; Kurtz, Ron (January 2003). "Femtosecond Laser Flap Creation for Laser in situ Keratomileusis: Six-month Follow-up of Initial U.S. Clinical Series". Journal of Refractive Surgery. 19 (1): 8–9. doi:10.3928/1081-597X-20030101-03. PMID   12553599.
  • Mikula, Eric R.; Raksi, Ferenc; Ahmed, Iqbal Ike; Sharma, Manu; Holland, Guy; Khazaeinezhad, Reza; Bradford, Samantha; Jester, James V.; Juhasz, Tibor (25 March 2022). "Femtosecond Laser Trabeculotomy in Perfused Human Cadaver Anterior Segments: A Novel, Noninvasive Approach to Glaucoma Treatment". Translational Vision Science & Technology. 11 (3): 28. doi:10.1167/tvst.11.3.28. PMC   8963660 . PMID   35333286.
  • Nagy, Zoltan Z.; Kranitz, Kinga; Ahmed, Iqbal Ike K.; De Francesco, Ticiana; Mikula, Eric; Juhasz, Tibor (December 2023). "First-in-Human Safety Study of Femtosecond Laser Image-Guided Trabeculotomy for Glaucoma Treatment". Ophthalmology Science. 3 (4): 100313. doi:10.1016/j.xops.2023.100313. PMC   10285639 . PMID   37363134.
  • Luo, Shangbang; Mikula, Eric; Khazaeinezhad, Reza; Bradford, Samantha; Zhang, Fengyi; Jester, James; Juhasz, Tibor (April 2024). "Evaluating the effect of pulse energy on femtosecond laser trabeculotomy (FLT) outflow channels for glaucoma treatment in human cadaver eyes". Lasers in Surgery and Medicine. 56 (4): 382–391. doi:10.1002/lsm.23783. PMC  11361556. PMID   38570914.
  • Related Research Articles

    <span class="mw-page-title-main">Glaucoma</span> Group of eye diseases

    Glaucoma is a group of eye diseases that can lead to damage of the optic nerve. The optic nerve transmits visual information from the eye to the brain. Glaucoma may cause vision loss if left untreated. It has been called the "silent thief of sight" because the loss of vision usually occurs slowly over a long period of time. A major risk factor for glaucoma is increased pressure within the eye, known as intraocular pressure (IOP). It is associated with old age, a family history of glaucoma, and certain medical conditions or the use of some medications. The word glaucoma comes from the Ancient Greek word γλαυκός, meaning 'gleaming, blue-green, gray'.

    <span class="mw-page-title-main">Farsightedness</span> Eye condition in which light is focused behind instead of on the retina

    Far-sightedness, also known as long-sightedness, hypermetropia, and hyperopia, is a condition of the eye where distant objects are seen clearly but near objects appear blurred. This blur is due to incoming light being focused behind, instead of on, the retina due to insufficient accommodation by the lens. Minor hypermetropia in young patients is usually corrected by their accommodation, without any defects in vision. But, due to this accommodative effort for distant vision, people may complain of eye strain during prolonged reading. If the hypermetropia is high, there will be defective vision for both distance and near. People may also experience accommodative dysfunction, binocular dysfunction, amblyopia, and strabismus. Newborns are almost invariably hypermetropic, but it gradually decreases as the newborn gets older.

    <span class="mw-page-title-main">LASIK</span> Corrective ophthalmological surgery

    LASIK or Lasik, commonly referred to as laser eye surgery or laser vision correction, is a type of refractive surgery for the correction of myopia, hyperopia, and astigmatism. LASIK surgery is performed by an ophthalmologist who uses a femtosecond laser or a microkeratome to create a corneal flap to expose the corneal stroma and then an excimer laser to reshape the corneal stroma in order to improve visual acuity.

    The National Eye Institute (NEI) is part of the U.S. National Institutes of Health (NIH), an agency of the U.S. Department of Health and Human Services. The mission of NEI is "to eliminate vision loss and improve quality of life through vision research." NEI consists of two major branches for research: an extramural branch that funds studies outside NIH and an intramural branch that funds research on the NIH campus in Bethesda, Maryland. Most of the NEI budget funds extramural research.

    A microkeratome is a precision surgical instrument with an oscillating blade designed for creating the corneal flap in LASIK or ALK surgery. The normal human cornea varies from around 500 to 600 μm in thickness; and in the LASIK procedure, the microkeratome creates an 83 to 200 μm thick flap. The microkeratome uses an oscillating blade system, which has a blade that oscillates horizontally as the blade travels vertically for a precise cut. This piece of equipment is used all around the world to cut the cornea flap. The microkeratome is also used in Descemet's stripping automated endothelial keratoplasty (DSAEK), where it is used to slice a thin layer from the back of the donor cornea, which is then transplanted into the posterior cornea of the recipient. It was invented by Jose Barraquer and Cesar Carlos Carriazo in the 1950s in Colombia.

    <span class="mw-page-title-main">Eye surgery</span> Surgery performed on the eye or its adnexa

    Eye surgery, also known as ophthalmic surgery or ocular surgery, is surgery performed on the eye or its adnexa. Eye surgery is part of ophthalmology and is performed by an ophthalmologist or eye surgeon. The eye is a fragile organ, and requires due care before, during, and after a surgical procedure to minimize or prevent further damage. An eye surgeon is responsible for selecting the appropriate surgical procedure for the patient, and for taking the necessary safety precautions. Mentions of eye surgery can be found in several ancient texts dating back as early as 1800 BC, with cataract treatment starting in the fifth century BC. It continues to be a widely practiced class of surgery, with various techniques having been developed for treating eye problems.

    <span class="mw-page-title-main">Refractive surgery</span> Surgery to treat common vision disorders

    Refractive surgery is an optional eye surgery used to improve the refractive state of the eye and decrease or eliminate dependency on glasses or contact lenses. This can include various methods of surgical remodeling of the cornea (keratomileusis), lens implantation or lens replacement. The most common methods today use excimer lasers to reshape the curvature of the cornea. Refractive eye surgeries are used to treat common vision disorders such as myopia, hyperopia, presbyopia and astigmatism.

    <span class="mw-page-title-main">Astigmatism</span> Type of eye defect

    Astigmatism is a type of refractive error due to rotational asymmetry in the eye's refractive power. This results in distorted or blurred vision at any distance. Other symptoms can include eyestrain, headaches, and trouble driving at night. Astigmatism often occurs at birth and can change or develop later in life. If it occurs in early life and is left untreated, it may result in amblyopia.

    ReLExSmall incision lenticule extraction (SMILE), second generation of ReLEx Femtosecond lenticule extraction (FLEx), is a form of laser based refractive eye surgery developed by Carl Zeiss Meditec used to correct myopia, and cure astigmatism. Although similar to LASIK laser surgery, the intrastromal procedure uses a single femtosecond laser referenced to the corneal surface to cleave a thin lenticule from the corneal stroma for manual extraction.

    <span class="mw-page-title-main">Keratoprosthesis</span> Surgical procedure where a diseased cornea is replaced with an artificial one

    Keratoprosthesis is a surgical procedure where a diseased cornea is replaced with an artificial cornea. Traditionally, keratoprosthesis is recommended after a person has had a failure of one or more donor corneal transplants. More recently, a less invasive, non-penetrating artificial cornea has been developed which can be used in more routine cases of corneal blindness. While conventional cornea transplant uses donor tissue for transplant, an artificial cornea is used in the keratoprosthesis procedure. The surgery is performed to restore vision in patients with severely damaged cornea due to congenital birth defects, infections, injuries and burns.

    A corneal inlay is a device which is surgically implanted in the cornea of the eye as a treatment for presbyopia. Successful installation results in reducing dependence on reading glasses, so that the user can more easily engage in everyday tasks such as using a mobile phone, reading store shelf prices and working on a computer.

    Sheraz Daya is a British ophthalmologist. Daya founded the Centre for Sight in 1996, and works in stem-cell research and sight restoration and correction surgery.

    <span class="mw-page-title-main">Primary juvenile glaucoma</span> Medical condition

    Primary juvenile glaucoma is a subtype of primary congenital glaucoma that develops due to ocular hypertension and is diagnosed between three years of age and early adulthood. It is caused due to abnormalities in the anterior chamber angle development that obstruct aqueous outflow in the absence of systemic anomalies or other ocular malformation.

    Post-LASIK ectasia is a condition similar to keratoconus where the cornea starts to bulge forwards at a variable time after LASIK, PRK, or SMILE corneal laser eye surgery. However, the physiological processes of post-LASIK ectasia seem to be different from keratoconus. The visible changes in the basal epithelial cell and anterior and posterior keratocytes linked with keratoconus were not observed in post-LASIK ectasia.

    Micro-invasive glaucoma surgery (MIGS) is the latest advance in surgical treatment for glaucoma, which aims to reduce intraocular pressure by either increasing outflow of aqueous humor or reducing its production. MIGS comprises a group of surgical procedures which share common features. MIGS procedures involve a minimally invasive approach, often with small cuts or micro-incisions through the cornea that causes the least amount of trauma to surrounding scleral and conjunctival tissues. The techniques minimize tissue scarring, allowing for the possibility of traditional glaucoma procedures such as trabeculectomy or glaucoma valve implantation to be performed in the future if needed.

    Burkhard Dick is a German ophthalmologist who has specialized in refractive and cataract surgery. With his many contributions to the scientific literature on this topic, he is considered one of the pioneers of employing the femtosecond laser in cataract surgery. In the "Power List 2024" by the publication The Ophthalmologist, Burkhard Dick was listed among the world's most 100 most influential ophthalmologists.

    <span class="mw-page-title-main">Corneal opacity</span> Medical condition

    Corneal opacification is a term used when the human cornea loses its transparency. The term corneal opacity is used particularly for the loss of transparency of cornea due to scarring. Transparency of the cornea is dependent on the uniform diameter and the regular spacing and arrangement of the collagen fibrils within the stroma. Alterations in the spacing of collagen fibrils in a variety of conditions including corneal edema, scars, and macular corneal dystrophy is clinically manifested as corneal opacity. The term corneal blindness is commonly used to describe blindness due to corneal opacity.

    Herbert Edward Kaufman is an American ophthalmologist who discovered idoxuridine, the first clinically useful antiviral agent; co-developed with William Bourne the clinical specular microscope to view the live corneal endothelium, co-developed timolol with Thomas Zimmerman, a new class of medications to treat glaucoma; corneal storage media for eye banks; natamycin, the first commercially available medication to treat fungal infections of the eye; co-developed with Tony Gasset the use of bandage contact lenses; and was involved in the first laser vision photorefractive keratectomy of the eye with Marguarite McDonald.

    Anastasios John Kanellopoulos is a Greek-American eye surgeon specializing in corneal transplantation, cornea crosslinking for keratoconus, complicated cataract surgery and complicated glaucoma. Widely known for research and clinical contributions in micro-incision cataract, customized laser refractive surgery and corneal cross-linking propagation and most innovations, reducing corneal transplants for advanced keratoconus.

    Clear lens extraction, also known as refractive lensectomy, custom lens replacement or refractive lens exchange is a surgical procedure in which clear lens of the human eye is removed. Unlike cataract surgery, where cloudy lens is removed to treat cataract, clear lens extraction is done to surgically correct refractive errors such as high myopia. It can also be done in hyperopic or presbyopic patients who wish to have a multifocal IOL implanted to avoid wearing glasses. It is also used as a treatment for diseases such as angle closure glaucoma.

    References

    1. 1 2 3 "Tibor Juhasz | Samueli School of Engineering at UC Irvine". engineering.uci.edu.
    2. 1 2 "Vialase ® | Redefining Glaucoma Treatment". Vialase.
    3. 1 2 "Tibor Juhasz - Google Scholar".
    4. "Awardees". The Golden Goose Award.
    5. "Grabbing the Golden Goose". 23 January 2023.
    6. Juhasz, T.; Bron, W. (November 1989). "Subpicosecond-resolved polariton decay". Physical Review Letters. 63 (21): 2385–2388. Bibcode:1989PhRvL..63.2385J. doi:10.1103/PhysRevLett.63.2385. PMID   10040875.[ non-primary source needed ]
    7. Bron, W. E.; Juhasz, T.; Mehta, S. (3 April 1989). "New nonequilibrium phonon state". Physical Review Letters. 62 (14): 1655–1658. Bibcode:1989PhRvL..62.1655B. doi:10.1103/PhysRevLett.62.1655. PMID   10039730.[ non-primary source needed ]
    8. Smith, G. O.; Juhasz, T.; Bron, W. E.; Levinson, Y. B. (13 April 1992). "Interaction of an electron-hole plasma with optical phonons in GaP". Physical Review Letters. 68 (15): 2366–2369. Bibcode:1992PhRvL..68.2366S. doi:10.1103/PhysRevLett.68.2366. PMID   10045377.[ non-primary source needed ]
    9. Juhasz, Tibor; Kastis, George A.; Suárez, Carlos; Bor, Zsolt; Bron, Walter E. (1996). "Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water". Lasers in Surgery and Medicine. 19 (1): 23–31. doi:10.1002/(SICI)1096-9101(1996)19:1<23::AID-LSM4>3.0.CO;2-S. PMID   8836993. S2CID   23193533.[ non-primary source needed ]
    10. Juhasz, T.; Loesel, F.H.; Kurtz, R.M.; Horvath, C.; Bille, J.F.; Mourou, G. (1999). "Corneal refractive surgery with femtosecond lasers". IEEE Journal of Selected Topics in Quantum Electronics. 5 (4): 902–910. Bibcode:1999IJSTQ...5..902J. doi:10.1109/2944.796309.[ non-primary source needed ]
    11. Cabrera Fernández, Delia; Niazy, A. M.; Kurtz, R. M.; Djotyan, G. P.; Juhasz, T. (2005). "Finite element analysis applied to cornea reshaping". Journal of Biomedical Optics. 10 (6): 064018. Bibcode:2005JBO....10f4018C. doi: 10.1117/1.2136149 . PMID   16409083.[ non-primary source needed ]
    12. Tran, Dan B.; Sarayba, Melvin A.; Bor, Zsolt; Garufis, Carrie; Duh, Yi-Jing; Soltes, Charles R.; Juhasz, Tibor; Kurtz, Ron M. (January 2005). "Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes: Potential impact on wavefront-guided laser in situ keratomileusis". Journal of Cataract and Refractive Surgery. 31 (1): 97–105. doi:10.1016/j.jcrs.2004.10.037. PMID   15721701. S2CID   21831666.[ non-primary source needed ]
    13. Fernández, D. Cabrera; Niazy, A. M.; Kurtz, R. M.; Djotyan, G. P.; Juhasz, T. (22 March 2006). "A Finite Element Model for Ultrafast Laser–Lamellar Keratoplasty". Annals of Biomedical Engineering. 34 (1): 169–183. doi:10.1007/s10439-005-9014-3. PMID   16474919. S2CID   26968302.[ non-primary source needed ]
    14. Soong, H; Mian, S; Abbasi, O; Juhasz, T (January 2005). "Femtosecond laser–assisted posterior lamellar keratoplastyInitial studies of surgical technique in eye bank eyes". Ophthalmology. 112 (1): 44–49. doi:10.1016/j.ophtha.2004.06.037. PMID   15629819.[ non-primary source needed ]
    15. Sarayba, Melvin A; Juhasz, Tibor; Chuck, Roy S; Ignacio, Teresa S; Nguyen, Thao B; Sweet, Paula; Kurtz, Ronald M (April 2005). "Femtosecond Laser Posterior Lamellar Keratoplasty: A Laboratory Model". Cornea. 24 (3): 328–333. doi:10.1097/01.ico.0000138830.50112.f4. PMID   15778607. S2CID   33175561.[ non-primary source needed ]
    16. Fernández, D Cabrera; Niazy, A M; Kurtz, R M; Djotyan, G P; Juhasz, T (March 2006). "Biomechanical Model of Corneal Transplantation". Journal of Refractive Surgery. 22 (3): 293–302. doi:10.3928/1081-597X-20060301-16. PMID   16602319.[ non-primary source needed ]
    17. ""Revolutionary" Hungarian Invention Used To Improve American Fighter Pilots' Eyesight". 30 August 2016.
    18. Winkler, Moritz; Shoa, Golroxan; Xie, Yilu; Petsche, Steven J.; Pinsky, Peter M.; Juhasz, Tibor; Brown, Donald J.; Jester, James V. (5 November 2013). "Three-Dimensional Distribution of Transverse Collagen Fibers in the Anterior Human Corneal Stroma". Investigative Ophthalmology & Visual Science. 54 (12): 7293–7501. doi:10.1167/iovs.13-13150. PMC   4589141 . PMID   24114547.[ non-primary source needed ]
    19. Mikula, Eric R.; Jester, James V.; Juhasz, Tibor (21 June 2016). "Measurement of an Elasticity Map in the Human Cornea". Investigative Ophthalmology & Visual Science. 57 (7): 3282–3286. doi:10.1167/iovs.15-18248. PMC   4961063 . PMID   27327584.[ non-primary source needed ]
    20. Mikula, Eric; Winkler, Moritz; Juhasz, Tibor; Brown, Donald J.; Shoa, Golroxan; Tran, Stephanie; Kenney, M. Cristina; Jester, James V. (October 2018). "Axial mechanical and structural characterization of keratoconus corneas". Experimental Eye Research. 175: 14–19. doi:10.1016/j.exer.2018.05.019. PMC   7324026 . PMID   29842851.[ non-primary source needed ]
    21. Sacks, Zachary S.; Kurtz, Ron M.; Juhasz, Tibor; Mourau, Gerard A. (2002). "High precision subsurface photodisruption in human sclera". Journal of Biomedical Optics. 7 (3): 442–450. Bibcode:2002JBO.....7..442S. doi: 10.1117/1.1482381 . PMID   12175295.[ non-primary source needed ]
    22. Chaudhary, Gautam; Rao, Bin; Chai, Dongyul; Chen, Zhongping; Juhasz, Tibor (2007). "Investigation and visualization of scleral channels created with femtosecond laser in enucleated human eyes using 3D optical coherence tomography images". In Manns, Fabrice; Soederberg, Per G.; Ho, Arthur; Stuck, Bruce E.; Belkin, Michael (eds.). Ophthalmic Technologies XVII. Vol. 6426. pp. 64260B. doi:10.1117/12.701297. S2CID   122311420.[ non-primary source needed ]
    23. Luo, Shangbang; Holland, Guy; Mikula, Eric; Bradford, Samantha; Khazaeinezhad, Eric; Jester, James; Juhasz, Tibor (May 2022). "Dispersion compensation for spectral domain optical coherence tomography by time-frequency analysis and iterative optimization". Optics Continuum. 1 (5): 1117–1136. doi: 10.1364/OPTCON.455242 .
    24. Luo, Shangbang; Holland, Guy; Khazaeinezhad, Reza; Bradford, Samantha; Joshi, Rohan; Juhasz, Tibor (24 August 2023). "Iridocorneal angle imaging of a human donor eye by spectral-domain optical coherence tomography". Scientific Reports. 13 (1): 13861. Bibcode:2023NatSR..1313861L. doi:10.1038/s41598-023-37248-0. PMC   10449890 . PMID   37620338.[ non-primary source needed ]
    25. Luo, Shangbang; Mikula, Eric; Khazaeinezhad, Reza; Bradford, Samantha; Zhang, Fengyi; Jester, James; Juhasz, Tibor (April 2024). "Evaluating the effect of pulse energy on femtosecond laser trabeculotomy (FLT) outflow channels for glaucoma treatment in human cadaver eyes". Lasers in Surgery and Medicine. 56 (4): 382–391. doi:10.1002/lsm.23783. PMC  11361556. PMID   38570914.
    26. Mikula, Eric; Holland, Guy; Bradford, Samantha; Khazaeinezhad, Reza; Srass, Hadi; Suarez, Carlos; Jester, James V.; Juhasz, Tibor (18 August 2021). "Intraocular Pressure Reduction by Femtosecond Laser Created Trabecular Channels in Perfused Human Anterior Segments". Translational Vision Science & Technology. 10 (9): 22. doi:10.1167/tvst.10.9.22. PMC   8374973 . PMID   34406341.[ non-primary source needed ]
    27. "Nonlinear collagen crosslinking using a single, amplified, femtosecond laser pulse".
    28. Mikula, Eric R.; Raksi, Ferenc; Ahmed, Iqbal Ike; Sharma, Manu; Holland, Guy; Khazaeinezhad, Reza; Bradford, Samantha; Jester, James V.; Juhasz, Tibor (25 March 2022). "Femtosecond Laser Trabeculotomy in Perfused Human Cadaver Anterior Segments: A Novel, Noninvasive Approach to Glaucoma Treatment". Translational Vision Science & Technology. 11 (3): 28. doi:10.1167/tvst.11.3.28. PMC   8963660 . PMID   35333286.[ non-primary source needed ]
    29. "WIPO - Search International and National Patent Collections". patentscope.wipo.int.
    30. Nagy, Zoltan Z.; Kranitz, Kinga; Ahmed, Iqbal Ike K.; De Francesco, Ticiana; Mikula, Eric; Juhasz, Tibor (December 2023). "First-in-Human Safety Study of Femtosecond Laser Image-Guided Trabeculotomy for Glaucoma Treatment". Ophthalmology Science. 3 (4): 100313. doi:10.1016/j.xops.2023.100313. PMC   10285639 . PMID   37363134.[ non-primary source needed ]
    31. "Nonlinear optical photodynamic therapy (NLO-PDT) of the cornea".
    32. "Surgical treatment for glaucoma".
    33. Chai, Dongyul; Juhasz, Tibor; Brown, Donald J.; Jester, James V. (20 March 2013). "Nonlinear optical collagen cross-linking and mechanical stiffening: a possible photodynamic therapeutic approach to treating corneal ectasia". Journal of Biomedical Optics. 18 (3): 038003. Bibcode:2013JBO....18c8003C. doi:10.1117/1.JBO.18.3.038003. PMC   3603223 . PMID   23515869.[ non-primary source needed ]
    34. "Introducing the newly elected members of the Hungarian Academy of Sciences". MTA.hu. May 12, 2016.
    35. "2022 Golden Goose Award Honors Serendipitous Science".
    Tibor Juhasz
    Occupation(s) Physicist, academic
    Awards
    Academic background
    Education University of Szeged (Dipl. Phys.)
    University of California, Irvine (Ph.D.)