TracePro

Last updated

TracePro is a commercial optical engineering software program for designing and analyzing optical and illumination systems. The program's graphical user interface (GUI) is 3D CAD-based creating a virtual prototyping environment to perform software simulation before manufacture.

Contents

History

Developed by Lambda Research Corporation of Littleton, Massachusetts, USA, under an SBIR grant from NASA, the program has been in continual development since 1994. NASA uses the program in its next-generation integrated design manufacturing approach as detailed in NASA's Spinoff magazine. [1]

Markets

TracePro is used in the aerospace, defense, lighting, display, biomedical and illumination markets. It has been used in many projects for designing and analyzing all types of optical/illumination systems ranging from stray light suppression in telescopes and cameras to biomedical applications [2] to LED modeling [3] and solar collector modeling. [4]

In the aerospace market, TracePro is best known for its stray light analysis capabilities. The program was used to analyze the FIRST Telescope, [5] James Webb Space Telescope, the Mars Rover cameras, Long-Range Reconnaissance Imager (LORRI) [6] and the Terrestrial Planet Finder Coronagraph. [7]

The TracePro approach

Users create geometry either by using the native TracePro CAD interface or by importing models directly from SolidWorks, Pro/ENGINEER, Solid Edge, Autodesk Inventor or other CAD product that exports IGES or STEP models. TracePro additionally has an add-in to Solidworks, RayViz. RayViz allows users to apply and save optical properties directly to their SolidWorks model and ray trace surface sources as raysets to visualize light propagation within Solidworks. To ensure data integrity, a single model is used by both TracePro for ray tracing and optical analysis and by SolidWorks for mechanical design and modifying optical material properties. With RayViz, users significantly accelerate the iterative design process. Users using optical design programs such as OSLO, Zemax or Code V can also import these models to create a complete optomechanical design using the built-in multi-document interface. After creating the optical-mechanical model users then create sources using built-in source wizards, import models from the bulb catalogs or import ray files created from measured data, measured by Radiant Imaging's ProSource Radiant Source product. Then rays are traced through the systems to find energy distributions on any surface or track volume flux through any space. Users can also simulate lit appearance of illumination or lighting systems and trace bitmap images through optical systems to check for uniformity, veiling glare, flare, and distortion issues. Thermal effects and stray light issues can also be simulated.

Compatibility

TracePro works with other software products using a Dynamic Data Exchange (DDE) client/server interface. This enables the program to work with products such as MATLAB to create a multi-disciplinary environment. [8] TracePro also uses the Scheme language as a macro language to extend the program's capabilities and provide automated analysis, optimization, and tolerancing capabilities. TracePro models geometry using the Kubotek Kosmos 3D Framework. [9]

Editions

TracePro optical software is available in three commercial editions:

See also

Related Research Articles

<span class="mw-page-title-main">Computer-aided design</span> Constructing a product by means of computer

Computer-aided design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Designs made through CAD software help protect products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The terms computer-aided drafting (CAD) and computer-aided design and drafting (CADD) are also used.

Autodesk, Inc. is an American multinational software corporation that provides software products and services for the architecture, engineering, construction, manufacturing, media, education, and entertainment industries. Autodesk is headquartered in San Francisco, California, and has offices worldwide. Its U.S. offices are located in the states of California, Oregon, Colorado, Texas, Michigan, New Hampshire and Massachusetts. Its Canada offices are located in the provinces of Ontario, Quebec, and Alberta.

<span class="mw-page-title-main">SolidWorks</span> Commonly used software for 3D modeling

SolidWorks is a brand within Dassault Systèmes that develops and markets solid modeling computer-aided design, computer-aided engineering, 3D CAD design and collaboration, analysis, and product data management software. It developed the world's first 3D CAD application that ran on a desktop PC.

<span class="mw-page-title-main">Coronagraph</span> Telescopic attachment designed to block out the direct light from a star

A coronagraph is a telescopic attachment designed to block out the direct light from a star or other bright object so that nearby objects – which otherwise would be hidden in the object's bright glare – can be resolved. Most coronagraphs are intended to view the corona of the Sun, but a new class of conceptually similar instruments are being used to find extrasolar planets and circumstellar disks around nearby stars as well as host galaxies in quasars and other similar objects with active galactic nuclei (AGN).

<span class="mw-page-title-main">Rhinoceros 3D</span> 3D computer graphics software

Rhinoceros is a commercial 3D computer graphics and computer-aided design (CAD) application software that was developed by TLM, Inc, dba Robert McNeel & Associates, an American, privately held, and employee-owned company that was founded in 1978. Rhinoceros geometry is based on the NURBS mathematical model, which focuses on producing mathematically precise representation of curves and freeform surfaces in computer graphics.

<span class="mw-page-title-main">Fillet (mechanics)</span> Rounding of an interior or exterior corner

In mechanical engineering, a fillet is a rounding of an interior or exterior corner of a part. An interior or exterior corner, with an angle or type of bevel, is called a "chamfer". Fillet geometry, when on an interior corner is a line of concave function, whereas a fillet on an exterior corner is a line of convex function. Fillets commonly appear on welded, soldered, or brazed joints.

<span class="mw-page-title-main">3Dconnexion</span> German manufacturer of human interface devices

3Dconnexion is a German manufacturer of human interface devices for manipulating and navigating computer-generated 3D imagery. These devices are often referred to as 3D motion controllers, 3D navigation devices, 6DOF devices or a 3D mouse.

<span class="mw-page-title-main">Solid Edge</span> Computer-aided design software

Solid Edge is a 3D CAD, parametric feature and synchronous technology solid modeling software. It runs on Microsoft Windows and provides solid modeling, assembly modelling and 2D orthographic view functionality for mechanical designers. Through third party applications it has links to many other Product Lifecycle Management (PLM) technologies.

Vellum Investment Partners, LLC, dba Ashlar-Vellum, is an American software company that develops Computer-aided design (CAD) and 3D modeling software for both the Macintosh and Microsoft Windows platforms. Ashlar-Vellum's interface, designed in 1988 by Dr. Martin Newell and Dan Fitzpatrick, featured an automated Drafting Assistant that found useful points in the geometry and allowed the artist to quickly connect to locations like the "midpoint" or "tangent".

Optics Software for Layout and Optimization (OSLO) is an optical design program originally developed at the University of Rochester in the 1970s. The first commercial version was produced in 1976 by Sinclair Optics. Since then, OSLO has been rewritten several times as computer technology has advanced. In 1993, Sinclair Optics acquired the GENII program for optical design, and many of the features of GENII are now included in OSLO. Lambda Research Corporation purchased the program from Sinclair Optics in 2001.

The table below provides an overview of notable computer-aided design (CAD) software. It does not judge power, ease of use, or other user-experience aspects. The table does not include software that is still in development. For all-purpose 3D programs, see Comparison of 3D computer graphics software. CAD refers to a specific type of drawing and modelling software application that is used for creating designs and technical drawings. These can be 3D drawings or 2D drawings.

<span class="mw-page-title-main">BricsCAD</span> Computer-aided design software

BricsCAD® is a software application for computer-aided design (CAD), developed by Bricsys nv. The company was founded in 2002 by Erik de Keyser, a longtime CAD entrepreneur. In 2011 Bricsys acquired the intellectual property rights from Ledas for constraints-based parametric design tools, permitting the development of applications in the areas of direct modeling and assembly design. Bricsys is headquartered in Ghent, Belgium, and has additional development centers in Nizhny Novgorod and Novosibirsk, Russia; Bucharest, Romania and Singapore. Bricsys is a founding member of the Open Design Alliance, and joined the BuildingSMART International consortium in December 2016.

Fred Optical Engineering Software (FRED) is a commercial 3D CAD computer program for optical engineering used to simulate the propagation of light through optical systems. Fred can handle both incoherent and coherent light using Gaussian beam propagation. The program offers a high level of visualization using a WYSIWYG parametric interface. According to the publisher, Photon Engineering, the name "Fred" is not an acronym, and does not mean anything.

Stray light is light in an optical system which was not intended in the design. The light may be from the intended source, but follow paths other than intended, or it may be from a source other than that intended. This light will often set a working limit on the dynamic range of the system; it limits the signal-to-noise ratio or contrast ratio, by limiting how dark the system can be. Ocular straylight is stray light in the human eye.

<span class="mw-page-title-main">Cobalt (CAD program)</span> 3D computer graphics software

Cobalt is a parametric-based computer-aided design (CAD) and 3D modeling program that runs on both Macintosh and Microsoft Windows operating systems. The program combines the direct-modeling way to create and edit objects and the highly structured, history-driven parametric way exemplified by programs like Pro/ENGINEER. A product of Ashlar-Vellum, Cobalt is Wireframe-based and history-driven with associativity and 2D equation-driven parametrics and constraints. It offers surfacing tools, mold design tools, detailing, and engineering features. Cobalt includes a library of 149,000 mechanical parts.

Photopia Optical Design Software (Photopia) is a commercial optical engineering ray-tracing software program for the design and analysis of non-imaging optical systems. Photopia is written and distributed by LTI Optics, LLC and was first released in 1996. Photopia's main market is the architectural lighting industry but it is also used in the automotive, medical, industrial, signal and consumer products industries. Photopia includes a full library of lamps including the latest high brightness LEDs as well as a library of material BSDF data.

<span class="mw-page-title-main">KeyCreator</span> Software

KeyCreator is a commercial software application for 2D and 3D computer-aided design (CAD) and drafting available since 2004.

<span class="mw-page-title-main">Onshape</span> Computer-aided design software system

Onshape is a computer-aided design (CAD) software system, delivered over the Internet via a software as a service (SaaS) model. It makes extensive use of cloud computing, with compute-intensive processing and rendering performed on Internet-based servers, and users are able to interact with the system via a web browser or the iOS and Android apps. As a SaaS system, Onshape upgrades are released directly to the web interface, and the software does not require maintenance by the user.

References

  1. "Stray Light Analysis | NASA Spinoff".
  2. Edward Freniere, Richard Hassler, Eric Heinz, and Linda Smith, “Design for manufacturability (DFM) in the life sciences: fluorescence spectroscopy product platform realized with TracePro suite of opto-mechanical design software tools”, Proc. SPIE6430, 64301U (2007)
  3. Chao-hsi Tsao, Edward R. Freniere, and Linda Smith, “Improved predictive Modeling of white LEDs with accurate luminescence simulation and practical inputs using TracePro Opto-Mechanical design software”, Proc. SPIE, Vol. 7231, pp. 723111-723111-12 (2009)
  4. Meyer, T. J. J.; Hlavaty, J.; Smith, L.; Freniere, E. R.; Markvart, T., “Ray racing techniques applied to the modelling of fluorescent solar collectors”, Proc. SPIE, Vol. 7211, pp. 72110N-72110N-11 (2009)
  5. Eri J. Cohen, Anthony B. Hull, Javier Escobedo-Torres, Daniel D. Barber, Roger A. Johnston, Donald W. Small, Aluizio Prata, Jr., and Edward R. Freniere, “Optical design of the ultralight-weight FIRST telescope”, Proc. SPIE4015, p. 559 (2000)
  6. "Long Range Reconnaissance Imager (LORRI) Instrument | NASA". 26 March 2015.
  7. "Terrestrial Planet Finder Coronagraph - Science and Technology Definition Team (STDT) Report" (PDF). Archived from the original (PDF) on 2009-05-13. Retrieved 2009-05-04.
  8. "Working with MATLAB® and TracePro® through Component Object Model (COM)" (PDF). Lambda Research. Archived from the original (PDF) on 2020-10-31.
  9. "Geometric Software Components". KubotekKosmos.com.