Track-via-missile

Last updated

Track-via-missile or TVM refers to a missile guidance technique which combines features of semi-active radar homing (SARH) and radio command guidance. This avoids the problems with terminal accuracy normally seen by command guided missiles, especially at long range. It has been used on a number of long-range surface-to-air missiles (SAMs) including the MIM-104 Patriot.

Contents

Explanation

Command guidance has the advantage of isolating most of the equipment for the missile guidance at the launcher, where size and weight are significantly less important. In these systems, the radar that provides guidance is on the ground or ship and the missile lacks an independent guidance system. Typically two radars are used, one tracking the target and another the missile, so that they can fly independent and widely separated paths. A computer then calculates the position and velocity of the two and calculates an intercept point. The same computer then calculates the control inputs needed to fly the missile to that point and sends any required corrections to the missile via a radio signal, often using the radar tracking the missile as the radio signal.

As this system is simple to build, it was used as the basis for many early surface-to-air missile (SAM) systems. However, it has a significant drawback, especially for long-range fire. Radar signals spread out in space, similar to the cone-like beam of a flashlight, with typical beam spreads on the order of around 5 degrees. This means that at longer ranges, the target's location is only known within a gross value, perhaps on the order of several kilometers. Various signal encoding techniques can be used to narrow this down to something on the order of 0.1 degrees, but at long range, this still provides accuracy only on the order of hundreds of meters. This inaccuracy demands a huge warhead to ensure the destruction of the target.

This problem is avoided in the semi-active radar homing (SARH) concept. In these systems, the ground station still illuminates the target with its radar, but the receiver is on the missile. The reflection of the original signal off the target produces another cone-like beam, but one that is narrowest at the target. The receiver on the missile uses this signal to guide on, thus becoming increasingly accurate as it flies toward the target. There are a number of minor issues that result in a maximum accuracy (for early designs) on the order of tens of meters, but this is independent of range. This means SARH missiles can have much smaller warheads with the same overall effectiveness, although at the cost of having additional electronics on the missile.

The downside to the SARH approach is that the signal provided by the ground radar has to contain some form of additional encoding of the signal for the missile to determine the direction of the target within the cone-shaped signal it sees. Normally this is accomplished using a form of conical scanning which uses the timing of variations in the signal to determine the angle within the cone, but this demands that the signal is continuous, or "locked on". This is normally accomplished with SAMs by using a separate target illumination radar dedicated to this task.

In both cases, SAMs required separate radars for each missile being guided, which means that the system as a whole can only guide the number of missiles that it has radars. For SAMs in high-traffic environments, especially ships facing salvos of anti-ship missiles, it is possible to overwhelm the system's capabilities. In theory, the missile can add electronics to allow it to continue tracking a non-continuous signal and thus allow a single radar to provide tracking to several missiles, but using electronics of the 1950s and 60s this would be prohibitively expensive and large; even command guided systems generally lacked this capability. Addressing this was a major concern, especially for the US Navy and Royal Navy.

Track-via-missile combines these two concepts to avoid the problems of both. Like SARH, the receiver is placed on the missile and thus has increased accuracy as it approaches the target. Instead of processing it locally, the signal is instead rebroadcast on another frequency and received by the launcher. The launcher then compares the signal it sent to the one received by the missile, and through this comparison can perform the determination of the target location relative to the missile. But because the ground station knows the rough location of the target, and details of the original signal it sent, it does not require the signal to be continual and thus does not demand a separate illumination radar. After comparison and calculation, updates are sent to the missile as in the command-guided case using a data link.

TVM solves the accuracy problem of command guidance, but not the issue of requiring separate radars. In theory, this can be solved by placing the required electronics on the missile, but doing so using 1950s technology would lead to very large size and make the missile cost very high. Centralizing this at the launcher site is a much more tractable problem, especially after the introduction of military-grade transistors in the later 1950s. This led to the US Navy's RIM-50 Typhon missile and associated AN/SPG-59 radar, which had a single PESA radar and could salvo many missiles. Development problems led to its cancellation.

One additional advantage of TVM is that, as there is no tracking radar, there is nothing to indicate to the target that it is being tracked. This is normally a relatively simple task for a radar warning receiver that gives the target a warning that it should employ countermeasures, but in the TVM case the search radar signal is all that is needed and it does not change when the missile is launched.

Advantages

It is also possible for the ground station to receive direct radar reflections from the target (rather than the data downloaded by the missile) and combine the two sources of information to generate the interception course. This adds an extra element of ECM resistance to the system.

Disadvantages

TVM also has some disadvantages. For example, the data link could potentially be jammed, which is not possible with an active homing or “fire and forget” missile. Additionally, this technique requires the ground-based radar to be active throughout the engagement, potentially aiding aircraft equipped with anti-radiation missiles as they attempt to detect and engage the SAM radar. Another potential disadvantage compared to active radar homing is that the missile must rely on the ground-based radar for guidance, so if the target is able to put an obstacle between itself and the fixed radar system (e.g. a hill), or if it manages to get outside of the radar's tracking envelope (e.g., fly outside of the tracking “fan” of a PATRIOT radar, or fly outside the effective range of another system) then the missile will not be able to detect reflected radiation from the target and thus will be unable to continue the engagement.

Examples

Most very modern long-range SAM systems use the track-via-missile technique. This includes:

Related Research Articles

<span class="mw-page-title-main">AIM-7 Sparrow</span> Medium-range, semi-active radar homing air-to-air missile

The AIM-7 Sparrow is an American medium-range semi-active radar homing air-to-air missile operated by the United States Air Force, United States Navy, United States Marine Corps, and various other air forces and navies. Sparrow and its derivatives were the West's principal beyond visual range (BVR) air-to-air missile from the late 1950s until the 1990s. It remains in service, although it is being phased out in aviation applications in favor of the more advanced AIM-120 AMRAAM.

<span class="mw-page-title-main">Surface-to-air missile</span> Ground-launched missile designed to attack aerial targets

A surface-to-air missile (SAM), also known as a ground-to-air missile (GTAM) or surface-to-air guided weapon (SAGW), is a missile designed to be launched from the ground to destroy aircraft, ground targets or other missiles. It is one type of anti-aircraft system; in modern armed forces, missiles have replaced most other forms of dedicated anti-aircraft weapons, with anti-aircraft guns pushed into specialized roles.

Semi-automatic command to line of sight (SACLOS) is a method of missile command guidance. In SACLOS, the operator must continually point a sighting device at the target while the missile is in flight. Electronics in the sighting device and/or the missile then guide it to the target.

<span class="mw-page-title-main">Air-to-air missile</span> Missile fired from the air at airborne targets

An air-to-air missile (AAM) is a missile fired from an aircraft for the purpose of destroying another aircraft. AAMs are typically powered by one or more rocket motors, usually solid fueled but sometimes liquid fueled. Ramjet engines, as used on the Meteor, are emerging as propulsion that will enable future medium- to long-range missiles to maintain higher average speed across their engagement envelope.

Semi-active radar homing (SARH) is a common type of missile guidance system, perhaps the most common type for longer-range air-to-air and surface-to-air missile systems. The name refers to the fact that the missile itself is only a passive detector of a radar signal—provided by an external ("offboard") source—as it reflects off the target. Semi-active missile systems use bistatic continuous-wave radar.

<span class="mw-page-title-main">Missile guidance</span> Variety of methods of guiding a missile

Missile guidance refers to several methods of guiding a missile or a guided bomb to its intended target. The missile's target accuracy is a critical factor for its effectiveness. Guidance systems improve missile accuracy by improving its Probability of Guidance (Pg).

Beam-riding, also known as Line-Of-Sight Beam Riding (LOSBR), beam guidance or radar beam riding is a technique of directing a missile to its target by means of radar or a laser beam. The name refers to the way the missile flies down the guidance beam, which is aimed at the target. It is one of the simplest guidance systems and was widely used on early missile systems, however it had a number of disadvantages and is now found typically only in short-range roles.

A beyond-visual-range missile (BVR) is an air-to-air missile (BVRAAM) that is capable of engaging at ranges of 20 nmi (37 km) or beyond. This range has been achieved using dual pulse rocket motors or booster rocket motor and ramjet sustainer motor.

Command guidance is a type of missile guidance in which a ground station or aircraft relay signals to a guided missile via radio control or through a wire connecting the missile to the launcher and tell the missile where to steer to intercept its target. This control may also command the missile to detonate, even if the missile has a fuze.

<span class="mw-page-title-main">Active radar homing</span> Missile guidance technique

Active radar homing (ARH) is a missile guidance method in which a missile contains a radar transceiver and the electronics necessary for it to find and track its target autonomously. The NATO brevity code for an air-to-air active radar homing missile launch is fox three.

<span class="mw-page-title-main">RIM-8 Talos</span> U.S. Navy surface-to-air missile (1955–1979)

Bendix RIM-8 Talos was a long-range naval surface-to-air missile (SAM), among the earliest SAMs to equip United States Navy ships. The Talos used radar beam riding for guidance to the vicinity of its target, and semi-active radar homing (SARH) for terminal guidance. The four antennas surrounding the nose were SARH receivers, which functioned as a continuous wave interferometer. A solid rocket booster provided thrust for launch and a Bendix ramjet powered its flight to the target, with the warhead serving as the ramjet's compressor.

<span class="mw-page-title-main">AN/SPG-59</span>

The AN/SPG-59 was an advanced PESA phased array radar developed by the U.S. Navy starting in 1958. It was one of the earliest phased array radars. AN/SPG-59 was intended to offer search, track and guidance from a single radar system and antenna as part of the Typhon combat system. Paired with the new Typhon missile, the system was to provide wide-area air defense out to about 110 nautical miles (200 km) from suitable anti-aircraft cruisers. Both the radar and missile proved to be well beyond the state of the art of the era, and the project was eventually canceled in December 1963.

<span class="mw-page-title-main">Sky Bow</span> Surface-to-air anti-ballistic missile

The Sky Bow, or Tien Kung, are a series of surface-to-air anti-ballistic missile and anti-aircraft defense systems developed by Taiwan. The TK-2 and TK-3 are in service with the Military of the Republic of China.

<span class="mw-page-title-main">Guidance, navigation, and control</span> Branch of engineering

Guidance, navigation and control is a branch of engineering dealing with the design of systems to control the movement of vehicles, especially, automobiles, ships, aircraft, and spacecraft. In many cases these functions can be performed by trained humans. However, because of the speed of, for example, a rocket's dynamics, human reaction time is too slow to control this movement. Therefore, systems—now almost exclusively digital electronic—are used for such control. Even in cases where humans can perform these functions, it is often the case that GNC systems provide benefits such as alleviating operator work load, smoothing turbulence, fuel savings, etc. In addition, sophisticated applications of GNC enable automatic or remote control.

The track while scan (TWS) is a mode of radar operation in which the radar allocates part of its power to tracking the target or targets while part of its power is allocated to scanning, unlike the straight tracking mode, when the radar directs all its power to tracking the acquired targets. In the TWS mode the radar has a possibility to acquire additional targets as well as providing an overall view of the airspace and helping maintain better situational awareness.

<span class="mw-page-title-main">MIM-46 Mauler</span> Anti-aircraft missile system

The General Dynamics Mauler was a self-propelled anti-aircraft missile system designed to a late 1950s US Army requirement for a system to combat low-flying high-performance tactical fighters and short-range ballistic missiles.

<span class="mw-page-title-main">Hermes (missile)</span> Russian multi-role guided missile

Hermes is a family of modularly designed guided missiles developed in Russia by the KBP Instrument Design Bureau.

<span class="mw-page-title-main">SAM-N-2 Lark</span> Surface-to-air missile

The Lark project was a solid-fuel boosted, liquid-fueled surface-to-air missile developed by the United States Navy to meet the kamikaze threat. It was developed as a crash program to introduce a medium-range defensive layer that would attack targets between the long-range combat air patrols and short-range anti-aircraft artillery. This produced a design with roughly 30 miles (48 km) maximum range and subsonic performance, suitable for attacks against Japanese aircraft.

<span class="mw-page-title-main">Terminal guidance</span>

In the field of weaponry, terminal guidance refers to any guidance system that is primarily or solely active during the "terminal phase", just before the weapon impacts its target. The term is generally used in reference to missile guidance systems, and specifically to missiles that use more than one guidance system through the missile's flight.

An inverse monopulse seeker is a type of semi-active radar homing that offers significant advantages over earlier designs. The system requires electronics that can compare three signals at once, so this design did not become practically possible until the early 1970s. One of the first such examples was the Soviet Union R-40 air-to-air missiles used in MiG-25P introduced in service in 1970 and RAF's Skyflash missile introduced in 1978, an adaptation of the AIM-7 Sparrow that replaced the original Raytheon seeker with a monopulse model from Marconi, followed by a very similar conversion by Selenia for the Italian Aspide. The USAF adopted similar technology in the M model of the AIM-7 Sparrow, and such designs are universal in semi-active designs today.

References

  1. Kopp, Carlo (22 December 2006). "Almaz S-300P/PT/PS/PMU/PMU1/PMU2 / Almaz-Antey S-400 Triumf / SA-10/20/21 Grumble / Gargoyle". p. 1.