Anti-ship missile

Last updated

RGM-84 Harpoon firing from USS Leahy in 1983 AGM-84 Harpoon launched from USS Leahy (CG-16).jpg
RGM-84 Harpoon firing from USS Leahy in 1983
Martel guided anti-ship missile Martel TV-Guided Missile - Elvington - BB.jpg
Martel guided anti-ship missile
The MBDA Exocet anti-ship missile under a Dassault Rafale Exocet AM39 P1220892.jpg
The MBDA Exocet anti-ship missile under a Dassault Rafale
BrahMos, a supersonic cruise missile, compatible of being launched from multiple platforms. BrahMos MAKS2009.jpg
BrahMos, a supersonic cruise missile, compatible of being launched from multiple platforms.

An anti-ship missile (AShM)[ citation needed ] is a guided missile that is designed for use against ships and large boats. Most anti-ship missiles are of the sea-skimming variety, and many use a combination of inertial guidance and active radar homing. A large number of other anti-ship missiles use infrared homing to follow the heat that is emitted by a ship; it is also possible for anti-ship missiles to be guided by radio command all the way.

Contents

The first anti-ship missiles, which were developed and built by Nazi Germany, used radio command guidance. [2] These saw some success in the Mediterranean Theatre during 1943–44, sinking or heavily damaging at least 31 ships with the Henschel Hs 293 and more than seven with the Fritz X , including the Italian battleship Roma and the light cruiser USS Savannah. A variant of the HS 293 had a TV camera/transmitter on board. The bomber carrying it could then fly outside the range of naval anti-aircraft guns and use visual guidance via the bombardier to lead the missile to its target by radio control.[ citation needed ]

Many anti-ship missiles can be launched from a variety of weapons systems including surface warships (also referred to as ship-to-ship missiles), submarines, bombers, fighter planes, patrol planes, helicopters, shore batteries, land vehicles, and, conceivably, even infantrymen firing shoulder-launched missiles. The term surface-to-surface missile (SSM) is used when appropriate. The longer-range anti-ship missiles are often called anti-ship cruise missiles.

Etymology

A typical abbreviation for the phrase "anti-ship missile" is AShM or ASHM, used to avoid confusion with air-to-surface missiles (ASMs), anti-submarine missiles (anti-submarine warfare missiles (ASWMs)), and anti-satellite missiles (ASatMs or ASATMs).[ citation needed ]

History

Anti-ship missiles were among the first instances of short-range guided weapons during the Second World War in 1943–1944. The German Luftwaffe used the Hs 293, the Fritz X, as well as others missiles, launched from its bombers, with deadly effect against some Allied ships. The first ship sunk by a guided missile was HMS Egret on 27 August 1943, at the Bay of Biscay, [3] other ships targeted were the British troop carrier HMT Rohna, sunk with heavy loss of life and the United States Navy light cruiser USS Savannah off Salerno, Italy, being seriously damaged. These all used radio command-guidance from the bombardiers of the warplanes that launched them. Some of these hit and either sank or damaged a number of ships, including warships offshore of amphibious landings on western Italy. These radio-controlled missiles were used successfully until the Allied navies developed missile countermeasures—principally radio jamming. The Allies also developed some of their own similar radio-guided AShMs, starting with the US Navy's SWOD-9 Bat – the first autonomously guided, radar-homing anti-ship weapon deployed worldwide, being deployed against the Japanese in April 1945 – but the Bat saw little use in combat, partly from its own late-war deployment date leaving few Axis ships remaining as targets.

During the Cold War, the Soviet Union turned to a sea-denial strategy concentrating on submarines, naval mines and the AShM. One of the first products of the decision was the SS-N-2 Styx missile. Further products were to follow, and they were soon loaded onto the Soviet Air Force's Tu-95 Bear and Tu-22 Blinder bombers, in the case of the air-launched KS-1 Komet.

P-15 unloaded from missile tube aboard the USNS Hiddensee Hiddensee P-20 missile.jpg
P-15 unloaded from missile tube aboard the USNS Hiddensee

In 1967, the Israeli Navy's destroyer Eilat was the first ship to be sunk by a ship-launched missile—a number of Styx missiles launched by Egyptian Komar-class missile boats off the Sinai Peninsula.

In the Indo-Pakistani War of 1971 the Indian Navy conducted two raids using Osa-class missile boats employing the Styx on the Pakistani naval base at Karachi. These raids resulted in the destruction or crippling of approximately two thirds of the Pakistani Navy. Major losses included two destroyers, a fleet oiler, an ammunition ship, approximately a dozen merchant ships, and numerous smaller craft. Major shore-based facilities, including fuel storage tanks and naval installations were also destroyed. The Osas returned to base without loss.

The Battle of Latakia in 1973 (during the Yom Kippur/Ramadan War) was the scene of the world's first combat between missile boats. In this battle, the Israeli Navy destroyed Syrian warships without suffering any damage, using electronic countermeasures and ruses for defense. After defeating the Syrian Navy the Israeli missile boats also sank a number of Egyptian warships, again without suffering any damage in return, thus achieving total naval supremacy for the rest of the war.

Anti-ship missiles were used in the 1982 Falklands War. The British warship HMS Sheffield, a Type 42 destroyer, was struck by a single air-launched Exocet and later sank as a result of the damage. The container ship Atlantic Conveyor was hit by two Exocets and burnt out and subsequently sank while under tow. HMS Glamorgan was damaged when she was struck by an MM38, a ship-launched version of the Exocet, fired from a launcher taken from the Argentine Navy destroyer ARA Comodoro Seguí and mounted on a trailer by Navy technicians, [4] but she had taken evasive action that limited the damage.

In 1987, a US Navy guided-missile frigate, USS Stark, was hit by an Exocet anti-ship missile fired by an Iraqi Mirage F-1 fighter plane. Stark was damaged, but she was able to steam to a friendly port for temporary repairs.

In October 1987, Sungari, an American-owned tanker steaming under the Liberian flag, and Sea Isle City, a Kuwaiti tanker steaming under the American flag, were hit by Iranian HY-2 missiles.

In 1988 AShMs were fired by both American and Iranian forces in Operation Praying Mantis in the Persian Gulf. During this naval battle, several Iranian warships were hit by American AShMs (and by the US Navy's Standard missiles—surface-to-air missiles which were doing double-duty in the anti-ship role). The US Navy hit the Iranian Navy frigate Sahand with three Harpoon missiles, four AGM-123 Skipper rocket-propelled bombs, a Walleye TV-guided bomb, and several 1,000 lb (454 kg) "iron bombs". Despite the large number of munitions and successful hits, Sahand did not sink until fire reached her ammunition magazine, causing it to detonate, sinking the vessel. [5] In the same engagement, American warships fired three Standard missiles at an Iranian Navy corvette. This corvette had such a low profile above the water that a Harpoon missile that arrived several minutes later could not lock onto it with its targeting radars.

In 2006, Lebanese Hezbollah fighters fired an AShM at the Israeli corvette INS Hanit, inflicting battle damage, but this warship managed to return to Israel in one piece and under its own power. A second missile in this same salvo struck and sank an Egyptian merchant ship.

R-360 Neptune guided anti-ship missile Neptune R-360 missile, Kyiv 2021, 05.jpg
R-360 Neptune guided anti-ship missile

On 13 April 2022, the Ukrainian government claimed to have hit the Russian cruiser Moskva with two R-360 Neptune missiles, resulting in the sinking of the Moskva. The Russian government did not confirm the attack, but admitted that the ship sank after a fire. [6] If Ukrainian claims are true, Moskva might be the largest warship ever disabled or destroyed by a missile, according to Carl Schuster, a retired US Navy captain and former director of operations at the US Pacific Command's Joint Intelligence Center. [7]

Comparison

NameYearWeightWarheadRangeSpeedPropulsionLaunch platformGuidanceForceComments
Zircon [8] Expected for (2018- [9] 2020) [10] Size 4 pcs instead of 1 P-700 for 1 launcher300–400 kg
(660–880 lb)
conventional or nuclear
400 km
(220 nmi) (export)
>1,000 km
(540 nmi) (domestic) [11]
Minimum 4700 km/h (Mach 5 to 6) [10] potentially up to Mach 8 [12] Liquid fuel scramjetSurface, submarine?Russia
3M-54E Klub (SS-N-27 "Sizzler")20062,300 kg
(5,100 lb)
200 kg
(440 lb)
220 km
(120 nmi)
0.8 M, 2.5/2.9MTurbojetSurface, sub, shipping containerInertial, active radarRussia
3M-54E1 Klub (SS-N-27 "Sizzler")20061,780 kg
(3,920 lb)
400 kg
(880 lb)
300 km
(160 nmi)
0.8 M, 2.5/2.9MTurbojetSurface, sub, shipping containerInertial, active radarRussia
3M-54 Kalibr (SS-N-27 "Sizzler")19931,300 kg
(2,900 lb)
200 kg
(440 lb)
660 km
(360 nmi)
0.8 M, 2.5/2.9MTurbojetSurface, sub, shipping containerInertial, active radarRussiaUsed in combat
P-1000 Vulkan 19856,300 kg
(13,900 lb)
500 kg
(1,100 lb)
700 and 1000 (appx.)  km (or 800 km [13] )3,825 km/h (2,065 kn)Solid-fuel ramjetSurfaceInertial, active radar homing/anti radar, mid course correctionUSSR/Russia
P-800 Oniks (SS-N-26)19833,000 kg
(6,600 lb)
250 kg
(550 lb)
800 km
(430 nmi) (Oniks-M)
600 km (320 nmi) (Domestic version for Russia)
3,600 km/h (1,900 kn)RamjetSurface, airActive-passive, radarRussia
P-700 Granit 19807,000 kg
(15,000 lb)
750 kg
(1,650 lb)
625 km
(337 nmi)
2,550 km/h (1,380 kn)Solid-fuel ramjetSurfaceInertial, active radar homing/anti radar, mid course correctionUSSR/Russia
P-500 Bazalt (SS-N-12 SANDBOX)19754,500 kg
(9,900 lb)
1000 kg / 350 kt nuclear550 km
(300 nmi)
3,060 km/h (1,650 kn)Liquid fuel rocketSurface, submarineSemi-active, terminal active radarUSSR
P-270 Moskit (SS-N-22 SUNBURN)19704,500 kg
(9,900 lb)
320 kg
(710 lb)
120 km
(65 nmi)
3,600 km/h (1,900 kn)RamjetSurface, airActive radar, infrarredUSSR
P-120 Malakhit (SS-N-9 SIREN)19722,953 kg
(6,510 lb)
500 kg
(1,100 lb)
110 km
(59 nmi)
Mach 0.9Turbojet, solid fuelSurfaceInertial, mid course correction, active radarUSSRUsed in combat
P-70 Ametist (SS-N-7 STARBRIGHT)19683,500 kg
(7,700 lb)
500 kg
(1,100 lb)
65 km
(35 nmi)
1,050 km/h (570 kn)Solid rocketSubInertial, terminal homingUSSR
P-15 Termit (SS-N-2 STYX)19583,100 kg
(6,800 lb)
454 kg
(1,001 lb)
80 km
(43 nmi)
1,100 km/h (590 kn)Liquid fuel rocketSurfaceActive radar, infrarredUSSRUsed in combat
P-5 Pyatyorka (SS-N-3 "Shaddock")19595,000 kg
(11,000 lb)
1,000 kg
(2,200 lb)
750 km
(400 nmi)
1,000 km/h (540 kn)TurbojetSurfaceInertial, mid course correction, active radarUSSR
Kh-15 (AS-16 Kickback)19881,200 kg
(2,600 lb)
150 kg conventional/nuclear300 km
(160 nmi)
6,125 km/h (3,307 kn)Solid-fuel rocketAirInertial/Active radarUSSR/Russia
Kh-55 19841,700 kg
(3,700 lb)
410 kg
(900 lb) conventional/200 kt nuclear
300 km
(160 nmi)
828 km/h (447 kn)TurbofanAirRadar inertial, tERCOM, infraredUSSR/Russia
Kh-35 (AS-20 KAYAK)1983520 kg
(1,150 lb)
145 kg
(320 lb)
130 km
(70 nmi)
970 km/h (520 kn)TurbofanSurface, airInertial, active radarUSSR/Russia/North Korea
Kh-22 (AS-4 Kitchen)19625,820 kg
(12,830 lb)
1000 kg conventional/nuclear400 km
(220 nmi)
4,000 km/h (2,200 kn)Liquid-fuel rocketAirInertialUSSR/Russia
KSShch (SS-N-1 "Scrubber")19582,300 kg
(5,100 lb)
Nuclear40 km
(22 nmi)
1,150 km/h (620 kn)Liquid-fuel rocketSurfaceInertialUSSR
SM-6 20131,500 kg
(3,300 lb)
64 kg
(141 lb)
370 km
(200 nmi)
4,287.7 km/h (2,315.2 kn)two stage/solid rocket booster surface ships, transporter erector launcher Inertial guidance, active radar homing, semi active radar homing United States(The anti-ship version will enter service in 2023.)
AGM-158C LRASM 2013 [14] / 2018 [15] ~900 kg450 kg370–560 km
(200–300 nmi) [16] [17] [18]
High subsonicTurbojetAir, shipPassive radar and infrared homingUnited States
AGM-123 Skipper II 1985582 kg
(1,283 lb)
450 kg
(990 lb)
25 km
(13 nmi)
1,100 km/h (590 kn)Solid-fueledAirLaser-guidedUnited StatesUsed in combat
BGM-109 Tomahawk 19831,200 kg
(2,600 lb)
450 kg
(990 lb)
1,666 km
(900 nmi) (Block V) [19]
880 km/h (480 kn)TurbofanAir, surface, submarine GPS, TERCOM, DSMAC United States(Previous anti-ship version withdrawn from service in 1994, new anti-ship version will enter service in 2023.)
Harpoon 1977691 kg
(1,523 lb)
221 kg
(487 lb)
280 km
(150 nmi)
864 km/h (467 kn)Turbojet engineAir, surface, submarineRadar (B3: midcourse update)United StatesUsed in combat
AGM-65F Maverick 1972300 kg
(660 lb)
140 kg
(310 lb)
30 km
(16 nmi)
1,150 km/h (620 kn)Solid propellantAirLaser, infrarredUnited StatesUsed in combat
Bat 19441,000 kg
(2,200 lb)
727 kg
(1,603 lb)
37 km
(20 nmi)
260–390 km/h (140–210 kn)NoneAirActive radarUnited StatesUsed in combat
MMP 201715 kg
(33 lb)
?5 km
(2.7 nmi)
?Solid propellantSurfaceInfraredFrance
ANL/Sea Venom 2017110 kg
(240 lb)
30 kg
(66 lb)
20 km
(11 nmi)
??Air/SurfaceInfraredFrance/United Kingdom
AS.34 Kormoran 1991630 kg
(1,390 lb)
220 kg
(490 lb)
35 km
(19 nmi)
1,101 km/h (594 kn)RocketAirInertial, active radarFrance/Germany
AS.15TT/MM.15 198596 kg
(212 lb)
30 kg
(66 lb)
15 km
(8.1 nmi)
1,008 km/h (544 kn)Solid propellantAirInertialFrance
ARMAT 1984550 kg
(1,210 lb)
160 kg
(350 lb)
120 km
(65 nmi)
1,100 km/h (590 kn)Solid propellantAirPassive radarFrance
Otomat/Milas 1977770 kg
(1,700 lb)
210 kg
(460 lb)
360 km
(190 nmi) (min.)
1,116 km/h (603 kn)TurbojetSurface, airInertial, GPS, active radarFrance/Italy
Exocet 1975670 kg
(1,480 lb)
165 kg
(364 lb)
180 km
(97 nmi)
1,134 km/h (612 kn)Solid propellant (Block 1, block 2), turbojet (Block 3)Air, surface, submarineInertial, active radarFranceUsed in combat
AS.37/AJ.168 Martel 1970550 kg
(1,210 lb)
150 kg
(330 lb)
60 km
(32 nmi)
1,070 km/h (580 kn)Solid propellantAirPassive radar, TVFrance/United KingdomUsed in combat
Malafon 19661,330 kg
(2,930 lb)
?13 km
(7.0 nmi)
808 km/h (436 kn)Solid propellantShip, surfaceMCLOS (radio link)France
SS.12/AS.12 196076 kg
(168 lb)
28 kg
(62 lb)
7 km
(3.8 nmi)
370 km/h (200 kn)Solid-fueledAir, surfaceWire-guided MCLOS FranceUsed in combat
Malaface19541,430 kg
(3,150 lb)
700 kg
(1,500 lb)
40 km
(22 nmi)
808 km/h (436 kn)Solid propellantSurfaceMCLOS (radio link)France
BHT-381940160 kg
(350 lb)
???None (glide bomb)AirMCLOS (radio link)France
Sea Eagle 1985580 kg
(1,280 lb)
230 kg
(510 lb)
110 km
(59 nmi) (min.)
1,000 km/h (540 kn)TurbojetAirInertial, active radarUnited Kingdom
Sea Skua 1983145 kg
(320 lb)
28 kg
(62 lb)
25 km
(13 nmi)
950 km/h (510 kn)Solid fuelAirSemi-active radarUnited KingdomUsed in combat
RBS-15 1985800 kg
(1,800 lb)
200 kg
(440 lb)
200 km
(110 nmi)
1,101 km/h (594 kn)TurbojetAir, surfaceInertial, GPS, radarSweden
RB 08 1966??70 km
(38 nmi)
SubsonicTurbojetSurfaceRadio link active radarSweden/France
RB 04 1962600 kg
(1,300 lb)
300 kg
(660 lb)
32 km
(17 nmi)
SubsonicSolid propellantAirActive radarSweden
Naval Strike Missile 2009410 kg
(900 lb)
125 kg
(276 lb)
250 km
(130 nmi)
High subsonicTurbojet and solid fuel boosterAir, surfaceInertial, GPS, terrain-reference, imaging IR, target databaseNorway
Penguin 1972385 kg
(849 lb)
130 kg
(290 lb)
55 km
(30 nmi) (min.)
1,468 km/h (793 kn)Solid propellantAir, surface, submarineInertial, laser, infrarredNorway
Fritz X 19431,362 kg
(3,003 lb)
320 kg
(710 lb)
5 km
(2.7 nmi)
1,235 km/h (667 kn)None (glide bomb)AirManual (radio link)GermanyUsed in combat
Henschel Hs 293 19431,045 kg
(2,304 lb)
295 kg
(650 lb)
5 km
(2.7 nmi)
828 km/h (447 kn)Liquid-propellant, then glidingAirMCLOS (radio link)GermanyUsed in combat
Blohm & Voss BV 246 1943730 kg
(1,610 lb)
435 kg
(959 lb)
210 km
(110 nmi)
450 km/h (240 kn)None (glide bomb)AirManual (radio link)Germany
RK-360MC Neptune 2021870 kg
(1,920 lb)
150 kg
(330 lb)
300 km
(160 nmi)
SubsonicTurbofanGround based TEL?UkraineUsed in combat [20]
BrahMos-II 2024+??1,000 km
(540 nmi)
400 km
(220 nmi)(export version)
6,125–8,575 km/h (3,307–4,630 kn)ScramjetShip, surface, air, submarine?India/Russia
BrahMos 20062,500 kg
(5,500 lb) (air), 3,000 kg
(6,600 lb) (ground)
300 kg
(660 lb)
290 km
(160 nmi)(Export version)
400 km
(220 nmi)(air-launched version)
700 km
(380 nmi)(surface-launched version)
3,675 km/h (1,984 kn)RamjetShip, surface, air, submarineInertial, active radarIndia/Russia
Çakır (missile) 2023275–330 kg
(606–728 lb)
70 kg
(150 lb)
150–200 km
(81–108 nmi)
919–1,040 km/h (496–562 kn)TurbojetShip, surface, airInertial, IIR, RF, Hybrid (IIR+RF)Turkey
Atmaca 2017800 kg
(1,800 lb)
220 kg
(490 lb)
220 km
(120 nmi)
+280 km
(150 nmi) (KARA Atmaca) [21] [22]
1,042 km/h (563 kn)TurbojetShip, surface, airInertial/GPS+RA+DLTurkey
SOM (missile) 2006600 kg
(1,300 lb)
230 kg
(510 lb)
SOM-A:250 km (160 mi) SOM-J:185 km (115 mi)1,153 km/h (623 kn)TurbojetAirInertial / GPS, terrain referenced navigation, automatic target recognition, imaging infraredTurkey
XASM-3 2016940 kg
(2,070 lb)
?150 km
(81 nmi)(original version)
400 km
(220 nmi)(extended range)
3,707 km/h (2,002 kn)RamjetAirInertial / GPS, mid-course correction, active/passive radarJapan
Type 12 2015700 kg
(1,500 lb)
?200 km
(110 nmi)(original version)
400 km
(220 nmi)(ship/air-launched and improved version)
900 km
(490 nmi)(upgrade in development)
1,500 km
(810 nmi)(future version)
?TurbojetShip, TEL, AirInertial, GPS, AESAJapan
Type 93 1993530 kg
(1,170 lb)
?170 km
(92 nmi)
?TurbojetAirInertial and IR ImageJapan
Type 91 1991510 kg
(1,120 lb)
260 kg
(570 lb)
150 km
(81 nmi)
?TurbojetAirInertial, mid course correction, active radarJapan
Type 80 1982600 kg
(1,300 lb)
150 kg
(330 lb)
50 km
(27 nmi)
?TurbojetAirInfarredJapan
Ohka 19432,140 kg
(4,720 lb)
1,200 kg
(2,600 lb)
36 km
(19 nmi)
630 km/h (340 kn)Solid-propellantAirManned (suicide attack)JapanUsed in combat
Hsiung Feng III 20071,470 kg
(3,240 lb)
?400 km
(220 nmi)
3,062 km (1,653 nmi)RamjetShip, surface, airInertial / Active radarTaiwan
Hsiung Feng IIE 20111,600 kg
(3,500 lb)
?600–2,000 km
(320–1,080 nmi)
1,041 km (562 nmi)Solid-fuel rocketShip, surface, airInertial/GPS/TERCOMTaiwan
Hsiung Feng II 1990685 kg
(1,510 lb)
180 kg
(400 lb)
20–250 km
(11–135 nmi)
1,041 km (562 nmi)Solid-fuel rocketShip, surface, airInertial midflight / Dual active radar plus infrared homingTaiwan
Hsiung Feng I 1978-2012537.5 kg
(1,185 lb)
150 kg
(330 lb)
40 km
(22 nmi)
833 km (450 nmi)Solid-fuel rocketShip, surface, airInertial / Radar beam riding plus terminal semi-active homingTaiwan
Gabriel 1962522 kg
(1,151 lb)
150 kg
(330 lb)
60 km
(32 nmi)
840 km/h (450 kn)Solid-fuel rocketAir, surfaceActive radarIsraelUsed in combat
Hae Sung-I (SSM-700K)2005718 kg
(1,583 lb)
300 kg
(660 lb)
150 km
(81 nmi)
1,013 km/h (547 kn)TurbojetShip, surfaceInertial, active radarSouth Korea
Noor 2005750 kg
(1,650 lb)
165 kg
(364 lb)
30–220 km
(16–119 nmi)
1,110–1,728 km/h (599–933 kn)Turbojet engineAir, Surface, ShipInertial, Active radar homingIranUsed in combat
Zafar 2012120 kg
(260 lb)
30 kg
(66 lb)
25 km
(13 nmi)
0.8 MTurbojetSurface, ShipActive radarIran
P15 & Silkworm KN1?????TurbofanSurface, coastalInertial, active radarNorth Korea/USSR/Russia
MANSUP 2009380 kg
(840 lb)
250 kg
(550 lb)
74–100 km
(40–54 nmi)
870 km/h (470 kn)Solid-fuel rocketShip, surfaceInertial, active radarBrazil
MANSUP-ER [23] 2023380 kg
(840 lb)
250 kg
(550 lb)
200 km
(110 nmi)
950 km/h (510 kn)TurbofanShip, surfaceInertial, active radarBrazil
NASM-SR [24] Expected for 2024375 kg
(827 lb)
100 kg
(220 lb)
55 km
(30 nmi)
980 km/h (530 kn)Solid-fuel rocketAirInertial, satellite guidance, IIRIndia
Naval anti ship missile -MR [24] Expected for 2025750 kg
(1,650 lb)
150 kg
(330 lb)
150–250 km
(81–135 nmi)
980 km/h (530 kn)Solid-fuel rocketAirInertial, satellite guidance, IIRIndia
ITCM 20231,450 kg
(3,200 lb)
200–300 kg
(440–660 lb)
1,000 km
(540 nmi)
1,110 km/h (600 kn)TurbofanShip, Surface, Air, SubmarineInertial, satellite guidance, IIRIndia

Threat posed

Video of P-1000 Vulkan missile destroying a target ship

Anti-ship missiles are a significant threat to surface ships, which have large radar, radio, and thermal signatures that are difficult to suppress. Once acquired, a ship cannot outrun or out-turn a missile, the warhead of which can inflict significant damage. To counter the threat posed, the modern surface combatant has to either avoid being detected, destroy the missile launch platform before it fires its missiles, or decoy or destroy all of the incoming missiles.

Modern navies have spent much time and effort developing counters to the threat of anti-ship missiles since the Second World War. Anti-ship missiles have been the driving force behind many aspects of modern ship design, especially in navies that operate aircraft carriers.

The first layer of antimissile defense by a modern, fully equipped aircraft carrier task force is always the long-range missile-carrying fighter planes of the aircraft carrier itself. Several fighters are kept on combat air patrol (CAP) 24 hours a day, seven days a week when at sea, and many more are put aloft when the situation warrants, such as during wartime or when a threat to the task force is detected.

These fighters patrol up to hundreds of miles away from the task force and they are equipped with airborne radar systems. When spotting an approaching aircraft on a threatening flight profile, it is the responsibility of the CAP to intercept it before any missile is launched. If this cannot be achieved in time, the missiles themselves can be targeted by the fighters's own weapons systems, usually their air-to-air missiles, but in extremis, by their rapid-fire cannon.

However, some AShMs might "leak" past the task force's fighter defenses. In addition, many modern warships operate independently of carrier-based air protection and they must provide their own defenses against missiles and aircraft. Under these circumstances, the ships themselves must utilize multilayered defenses which have been built into them.

For example, some warships, such as the US Navy's Ticonderoga-class guided missile cruisers, the Arleigh Burke-class guided missile destroyers, and the Royal Navy's Type 45 guided missile destroyer, use a combination of radar systems, integrated computer fire-control systems, and agile surface-to-air missiles (SAM) to simultaneously track, engage, and destroy several incoming anti-ship missiles or hostile warplanes at a time.

The primary American defensive system, called the Aegis Combat System, is also used by the navies of Japan, Spain, Norway, South Korea, and Australia. The Aegis system has been designed to defend against mass attacks by hostile anti-ship missiles or warplanes.

Any missiles that can elude the interception by medium-ranges SAM missiles can then be either deceived with electronic countermeasures or decoys; shot down by short-range missiles such as the Sea Sparrow or the Rolling Airframe Missile (RAM); engaged by the warship's main gun armament (if present); or, as a last resort, destroyed by a close-in weapon system (CIWS), such as the American Phalanx CIWS, Russian Kashtan CIWS, or the Dutch Goalkeeper CIWS.

Current threats and vulnerabilities

To counter these defense systems, countries such as Russia are developing or deploying missiles that slowly cruise at a very low level (about five meters above sea level) to within a short range of their target and then, at the point when radar detection becomes inevitable, initiate a supersonic, high-agility sprint (potentially with anti-aircraft missile detection and evasion) to close the terminal distance. Missiles, such as the SS-N-27 Sizzler, that incorporate this sort of threat modality are regarded by US Navy analysts as potentially being able to penetrate the US Navy's defensive systems. [25]

Recent years have seen a growing amount of attention being paid to the possibility of ballistic missiles being re-purposed or designed for an anti-ship role. Speculation has focused on the development of such missiles for use by China's People's Liberation Army Navy. Such an anti-ship ballistic missile would approach its target extremely rapidly, making it very difficult to intercept. [26]

Countermeasures

Countermeasures against anti-ship missiles include:

On February 25, 1991, during the first Gulf War, the Phalanx-equipped USS Jarrett was a few miles from USS Missouri and the destroyer HMS Gloucester. The ships were attacked by an Iraqi Silkworm missile (often referred to as the Seersucker), at which Missouri fired its SRBOC chaff. The Phalanx system on Jarrett, operating in the automatic target-acquisition mode, fixed upon Missouri's chaff, releasing a burst of rounds. From this burst, four rounds hit Missouri which was two to three miles (3.2 to 4.8 km) from Jarrett at the time. There were no injuries. [27] A Sea Dart missile was then launched from HMS Gloucester, which destroyed the Iraqi missile, achieving the first successful engagement of a missile by a missile during combat at sea.

Modern stealth ships – or ships that at least employ some stealth technology – to reduce the risk of detection and to make them a harder target for the missile itself. These passive countermeasures include:

Examples of these include the Norwegian Skjold-class patrol boat, the Swedish Visby-class corvette, the German Sachsen-class frigate, the US Navy's Zumwalt-class destroyer and Arleigh Burke-class destroyer, their Japanese Maritime Self-Defense Force's close counterparts in Aegis warships, the Atago-class destroyer, and the Kongo-class destroyer, the Chinese Type 054 frigate and the Type 052C destroyer, Russian Navy's Admiral Gorshkov-class frigate and Steregushchiy-class corvette, the Indian Shivalik-class frigate, Kolkata-class destroyer and Visakhapatnam-class destroyer, the French La Fayette-class frigate, the FREMM multipurpose frigate and the Royal Navy's Type 45 destroyer.

In response to China's development of anti-ship missiles and other anti-access/area denial capabilities, the United States has developed the AirSea Battle doctrine.

Related Research Articles

<span class="mw-page-title-main">Phalanx CIWS</span> Close-in weapon system

The Phalanx CIWS is an automated gun-based close-in weapon system to defend military watercraft automatically against incoming threats such as aircraft, missiles, and small boats. It was designed and manufactured by the General Dynamics Corporation, Pomona Division, later a part of Raytheon. Consisting of a radar-guided 20 mm (0.8 in) Vulcan cannon mounted on a swiveling base, the Phalanx has been used by the United States Navy and the naval forces of 15 other countries. The U.S. Navy deploys it on every class of surface combat ship, except the Zumwalt-class destroyer and San Antonio-class amphibious transport dock. Other users include the British Royal Navy, the Royal Australian Navy, the Royal New Zealand Navy, the Royal Canadian Navy, and the U.S. Coast Guard.

<span class="mw-page-title-main">Goalkeeper CIWS</span> Close-in weapon system

The Goalkeeper CIWS is a Dutch close-in weapon system (CIWS) introduced in 1979. It is an autonomous and completely automatic weapon system for short-range defence of ships against highly maneuverable missiles, aircraft and fast-maneuvering surface vessels. Once activated the system automatically undertakes the entire air defence process from surveillance and detection to destruction, including the selection of the next priority target.

<span class="mw-page-title-main">Exocet</span> French anti-ship missile

The Exocet is a French-built anti-ship missile whose various versions can be launched from surface vessels, submarines, helicopters and fixed-wing aircraft.

County-class destroyer Class of British warships

The County class was a class of British guided missile destroyers, the first such warships built by the Royal Navy. Designed specifically around the Seaslug anti-aircraft missile system, the primary role of these ships was area air defence around the aircraft carrier task force in the nuclear-war environment.

Type 21 frigate Class of general purpose frigates built for Royal Navy

The Type 21 frigate, or Amazon-class frigate, was a British Royal Navy general-purpose escort that was designed in the late 1960s, built in the 1970s and served throughout the 1980s into the 1990s.

<span class="mw-page-title-main">Close-in weapon system</span> Type of point-defense weapon system

A close-in weapon system is a point-defense weapon system for detecting and destroying short-range incoming missiles and enemy aircraft which have penetrated the outer defenses, typically mounted on a naval ship. Nearly all classes of larger modern warships are equipped with some kind of CIWS device.

<span class="mw-page-title-main">Seacat (missile)</span> Surface-to-air missile system

Seacat was a British short-range surface-to-air missile system intended to replace the ubiquitous Bofors 40 mm gun aboard warships of all sizes. It was the world's first operational shipboard point-defence missile system, and was designed so that the Bofors guns could be replaced with minimum modification to the recipient vessel and (originally) using existing fire-control systems. A mobile land-based version of the system was known as Tigercat.

<span class="mw-page-title-main">Sea Dart</span> Surface-to-air, surface-to-surface

Sea Dart, or GWS.30 was a Royal Navy surface-to-air missile system designed in the 1960s and entering service in 1973. It was fitted to the Type 42 destroyers, Type 82 destroyer and Invincible-class aircraft carriers of the Royal Navy. Originally developed by Hawker Siddeley, the missile was built by British Aerospace after 1977. It was withdrawn from service in 2012.

<span class="mw-page-title-main">RIM-116 Rolling Airframe Missile</span> Small, lightweight, infrared homing surface-to-air missile

The RIM-116 Rolling Airframe Missile (RAM) is a small, lightweight, infrared homing surface-to-air missile in use by the German, Japanese, Greek, Turkish, South Korean, Saudi Arabian, Egyptian, Mexican, UAE, and United States navies. It was originally intended and used primarily as a point-defense weapon against anti-ship missiles. As its name indicates, RAM rolls as it flies. The missile must roll during flight because the RF tracking system uses a two-antenna interferometer that can measure phase interference of the electromagnetic wave in one plane only. The rolling interferometer permits the antennas to look at all planes of incoming energy. In addition, because the missile rolls, only one pair of steering canards is required. As of 2005, it is the only U.S. Navy missile to operate in this manner.

<span class="mw-page-title-main">Sea Skua</span> British lightweight short-range anti-ship missile

The Sea Skua is a British lightweight short-range air-to-surface missile (ASM) designed for use from helicopters against ships. It was primarily used by the Royal Navy on the Westland Lynx. Although the missile is intended for helicopter use, Kuwait employs it in a shore battery and on their Umm Al Maradem fast attack craft.

<span class="mw-page-title-main">Stealth ship</span> Ship which uses stealth technology to reduce risk of detection

A stealth ship is a ship that employs stealth technology construction techniques in an effort to make it harder to detect by one or more of radar, visual, sonar, and infrared methods.

INS <i>Trishul</i> (F43)

INS Trishul (F43) is the second frigate of the Talwar class of the Indian Navy. Trishul, the guided missile frigate, joined the arsenal of Indian Navy in 2003. The ship was commissioned by the then Flag Officer Commanding-in-Chief, Western Naval Command Vice Admiral Arun Prakash at St. Petersburg, Russia on 25 June 2003. It has a complement of 32 officers and 228 sailors. In contrast to the lead ship INS Talwar, the sea trials of Trishul were considerably shortened as the ship performed well. Trishul arrived in Mumbai on 23 September 2003.

<i>Brandenburg</i>-class frigate Class of anti-submarine frigates in service with German navy

The F123 Brandenburg class is a class of German frigate. They were ordered by the German Navy in June 1989 and completed and commissioned between 1994 and 1996, replacing the Hamburg-class destroyers. The ships primarily carry out anti-submarine warfare (ASW), but they also contribute to local anti-aircraft defenses, the tactical command of squadrons, and surface-to-surface warfare operations. Together with the F124 Sachsen-class frigates, they are the mainstay of the German surface fleet.

<span class="mw-page-title-main">Naval tactics</span> Methods of engaging and defeating an enemy ship or fleet during naval warfare

Naval tactics and doctrine is the collective name for methods of engaging and defeating an enemy ship or fleet in battle at sea during naval warfare, the naval equivalent of military tactics on land.

<span class="mw-page-title-main">Anti-surface warfare</span> Naval combat on the open ocean

Anti-surface warfare is the branch of naval warfare concerned with the suppression of surface combatants. More generally, it is any weapons, sensors, or operations intended to attack or limit the effectiveness of an adversary's surface ships. Before the adoption of the submarine and naval aviation, all naval warfare consisted of anti-surface warfare. The distinct concept of an anti-surface warfare capability emerged after World War II, and literature on the subject as a distinct discipline is inherently dominated by the dynamics of the Cold War.

<span class="mw-page-title-main">Otomat</span> Anti-ship missile and land-attack missile

The Otomat is an anti-ship and coastal defence missile developed by the Italian company Oto Melara jointly with Matra and now made by MBDA. The name comes, for the first versions, from the name of the two builders and, for the later versions, Teseo, from the Italian word for Theseus. The MILAS variant is an anti-submarine missile. In its latest version Mk/2E purchased by the Italian Navy is a medium range anti-ship missile and a ground attack missile.

Type 051C destroyer Class of guided missile destroyers operated by the Chinese Peoples Liberation Army Navy

The Type 051C destroyer is a long-range air-defence guided-missile destroyer built by China in its ongoing effort to create a true blue water navy. The ship uses the hull design of the older Type 051B, but is equipped with the advanced Russian S-300FM air defence missiles systems. Currently, two ships of this class have been launched and deployed by People's Liberation Army Navy North Sea Fleet.

<span class="mw-page-title-main">Kashtan CIWS</span> Close-in weapon system

The Kortik close-in weapon system (CIWS) is a modern naval air defence gun-missile system deployed by the Russian Navy. Its export version is known as Kashtan, with the NATO designation CADS-N-1 Kashtan.

TF-2000-class destroyer Projected Turkish anti-air warfare destroyer

The TF-2000-class destroyer is a projected anti-air warfare guided-missile destroyer currently undergoing development by the Turkish Naval Institute. The class will provide survivability in the presence of aerial threat and also support mission functions such as command, control, and communications, reconnaissance, early warning, surface warfare, anti-submarine warfare and electronic warfare. Moreover, once in service, the TF-2000s are slated to be an integral part of Türkiye's expeditionary strike groups centered around the TCG Anadolu LHD and the country's future aircraft carrier(s). The TCG Anadolu is to be followed up by the TCG Trakya light aircraft carrier and President Erdoğan has also hinted at the construction of a larger aircraft carrier that is to be designed in cooperation with Spain. These capital vessels require destroyer escorts to defend them against enemy aircraft, ships and submarines; in other words, the perfect role for the TF-2000s once these new designs are slated for operational service by 2038. On 5 December 2007, Defence Industry Executive Committee approved plans to build six ships of this class. In January 2013, it was announced that Turkey was planning to acquire a total of 8 TF-2000 destroyers, which was confirmed at the International Defence Industry Fair (IDEF) 2021. With the realization of the project, it is intended to improve the anti-air warfare (AAW) capabilities of the Turkish Navy.

<i>Sovremenny</i>-class destroyer Class of destroyer built for the Soviet Navy

The Sovremenny class, Soviet designation Project 956 Sarych (buzzard), is a class of anti-ship and anti-aircraft guided-missile destroyers of the Soviet and later Russian Navy. The ships are named after qualities, with "Sovremenny" translating as "modern" or "contemporary". Most of the ships have been retired from active service and one converted into a museum ship in 2018; as of 2021 three remain in commission with the Russian Navy with several in overhaul. Four modified ships were delivered to the People's Liberation Army Navy, and remain in service.

References

  1. "Ship-based Weapon Complex System - BrahMos.com". www.brahmos.com. Retrieved 2024-02-24.
  2. "Bomb, Guided, Fritz X (X-1)". National Air and Space Museum.
  3. Ford, Roger (2013). Germany's Secret Weapons of World War II. London, United Kingdom: Amber Books. p. 224. ISBN   9781909160569.
  4. "An interview with CL (R) Ing. Julio Pérez, chief designer of Exocet trailer-based launcher" (in Spanish). Archived from the original on March 2, 2008.
  5. Bradley Peniston. "Photos of Sahand on fire". Navybook.com. Archived from the original on 14 June 2012. Retrieved 13 November 2014.
  6. "Russian warship: Moskva sinks in Black Sea". BBC News. 15 April 2022. Retrieved 15 April 2022.
  7. Lendon, Brad (14 April 2022). "Russian navy evacuates badly damaged flagship in Black Sea. Ukraine claims it was hit by a missile". CNN. Archived from the original on 14 April 2022. Retrieved 14 April 2022.
  8. "Крейсер "Адмирал Нахимов" получит гиперзвуковые ракеты" (in Russian). 26 October 2015. Archived from the original on 7 March 2016. Retrieved 31 January 2016.
  9. "Russia has created an 'unstoppable' 4,600mph missile". 27 March 2017. Archived from the original on 29 September 2017. Retrieved 19 September 2017.
  10. 1 2 "Russia's hypersonic Zircon missile to go into serial production in 2018". Archived from the original on 2016-05-23. Retrieved 2016-05-13.
  11. "Для гиперзвуковых крылатых ракет в России создано принципиально новое топливо". vesti.ru (in Russian). Archived from the original on 2017-05-29. Retrieved 2017-05-25.
  12. "На испытаниях российская ракета "Циркон" достигла восьми скоростей звука". vesti.ru (in Russian). Archived from the original on 2017-04-15. Retrieved 2017-04-15.
  13. "Никому в мире и не снилось: почему ракете "Вулкан" до сих пор нет равных на планете" (in Russian). Tvzvezda.ru. 2018-01-01. Archived from the original on 2018-09-16. Retrieved 2018-11-21.
  14. "LRASM / Long Range Anti-Ship Missile". Archived from the original on 2010-12-06. Retrieved 2010-11-14.
  15. "Arming New Platforms Will Push Up Value Of Missiles Market". Archived from the original on 2016-04-10. Retrieved 2016-05-13.
  16. "About the FlightGlobal Group - Blogs Announcement - flightglobal.com". Flightglobal.com. Archived from the original on 2018-04-15. Retrieved 2018-04-13.
  17. "US Navy's New Anti-Ship Missile Makes Progress". Ainonline.com. 15 December 2015. Archived from the original on 2018-04-14.
  18. "A Bridgehead Too Far? CSBA's Aggressive, risky Strategy For Marines". Breakingdefense.com. 15 November 2016. Archived from the original on 2018-04-14.
  19. "US Navy set to receive latest version of the Tomahawk missile". 17 March 2021.
  20. Treisman, Rachel (15 April 2022). "A Russian warship in the Black Sea was sunk by Ukrainian missiles, U.S. Official says". NPR.
  21. "Roketsan - KARA ATMACA Surface-To-Surface Cruise Missile".
  22. "ATMACA ANTI-SHIP MISSILE – Roketsan". Archived from the original on 2021-02-05. Retrieved 2021-06-19.
  23. "Grupo EDGE apresenta o míssil antinavio MANSUP-ER no Dubai Air Show". Poder Naval (in Portuguese). 14 November 2023.
  24. 1 2 Paul George, Justin (18 May 2022). "Smaller, slower than BrahMos, but deadly: Why desi anti-ship missile matters". The Week. Archived from the original on 19 May 2022. Retrieved 2022-05-18.
  25. "Navy Lacks Plan to Defend Against 'Sizzler' Missile". Bloomberg. Archived from the original on 19 November 2007. Retrieved 13 November 2014.
  26. David Crane (6 April 2009). "Chinese Anti-Ship Ballistic Missile (ASBM) 'Kill Weapon' Flummoxes U.S. Navy". DefenseReview.com (DR): An online tactical technology and military defense technology magazine with particular focus on the latest and greatest tactical firearms news (tactical gun news), tactical gear news and tactical shooting news. Archived from the original on 13 November 2014. Retrieved 13 November 2014.
  27. "Tab-H Friendly-fire Incidents". Gulflink.osd.mil. Archived from the original on 8 April 2010. Retrieved 2010-04-13.