Glide bomb

Last updated
A German 'Fritz X' glide bomb Fritz X side.jpg
A German 'Fritz X' glide bomb

A glide bomb or stand-off bomb is a standoff weapon with flight control surfaces to give it a flatter, gliding flight path than that of a conventional bomb without such surfaces. This allows it to be released at a distance from the target rather than right over it, allowing a successful attack without exposing the launching aircraft to anti-aircraft defenses near the target. [1] Glide bombs can accurately deliver warheads in a manner comparable to cruise missiles at a fraction of the cost—sometimes by installing flight control kits on simple unguided bombs—and they are very difficult for surface-to-air missiles to intercept due to their tiny radar signatures and short flight times. The only effective countermeasure in most cases is to shoot down enemy aircraft before they approach within launching range, making glide bombs very potent weapons where wartime exigencies prevent this. [2]

Contents

World War II-era glide bombs like the German Fritz X and Henschel Hs 293 pioneered the use of remote control systems, allowing the controlling aircraft to direct the bomb to a pinpoint target as a pioneering form of precision-guided munition. Modern systems are generally self-guided or semi-automated, using GPS or laser designators to hit their target.

The term "glide bombing" does not refer to the use of glide bombs, but a style of shallow-angle dive bombing. [3]

Early efforts

German designs

World War I

In October 1914, Wilhelm von Siemens suggested what became known as the Siemens torpedo glider, a wire-guided flying missile which would essentially have comprised a naval torpedo with an attached airframe. It was not intended to be flown into a target, but rather at a suitable altitude and position, a signal would be transmitted, causing the airframe components to detach from the torpedo which would then enter the water and continue towards its target. Guidance signals were to be transmitted through a thin copper wire, and guide flares were to be carried to help control.

Siemens-Schuckertwerke was already occupied with remote controlled boats (the FL-boats or Fernlenkboote), and had some experience in this area. Flight testing was performed under the supervision of an engineer called Dorner from January 1915 onwards, using airships as carriers and different types of biplane and monoplane glider airframes to which a torpedo was fitted. The last test flight was performed on February 8, 1918.

It was planned to use the Siemens-Schuckert R.VIII bomber as a carrier craft, but the Armistice stopped the project. [4]

World War II

Development

During World War II, the first operational glide bombs were developed by the Germans as an anti-shipping weapon. Ships are typically very difficult to attack: a direct hit or an extremely near miss is needed to do any serious damage, and hitting a target as small as a ship was difficult in this period. At first dive bombers were used with some success in this role, but their successes were countered by ever-increasing anti-aircraft defenses on the Royal Navy ships they were attacking. By 1941, accurate bombing was as difficult as ever, with the added problem of evading anti-aircraft fire.

The German solution was the development of a number of glide bombs employing radio control guidance. One was created by fitting a control package on the rear of an otherwise standard bomb, starting with their 1400 kg armor-piercing bomb to create the Ruhrstahl SD 1400, commonly referred to as Fritz-X. This weapon was designed specifically to pierce the deck armor of heavy cruisers and battleships. The bomb aimer dropped the bomb from high altitude while the aircraft was still approaching the ship, and guided it to impact with the target by sending commands to spoilers attached to its rear. This proved to be difficult to do, because as the bomb dropped toward the target it fell further behind the launch aircraft, eventually becoming difficult to see. This problem was solved by having the launch aircraft slow down and enter a climb to avoid overtaking the bomb as it fell.

In addition it proved difficult to properly guide the bomb to impact as the angle of descent changed, and if the bomb was not aimed accurately so as to end up roughly right over the target, there was little that could be done at later stages to fix the problem. Nevertheless, the Fritz X proved useful with crews trained on its use. In test drops from 8,000 m (26,000 ft), experienced bomb aimers could place half the bombs within a 15 m (49 ft 3 in) radius and 90% within 30 m (98 ft 5 in).

Design work started as early as 1939, and a version of the guidance package mounted to standard 500 kg bombs was tested in September 1940. It was found that the bomb was unable to penetrate a ship's armor, so changes were made to fit an armor-piercing warhead before the system finally entered service in 1943. The basic A-1 model was the only one to be produced in any number, but developments included the B model with a custom armor-piercing warhead, and the C model with a conical warhead which was designed to hit the water short of the ship and then travel a short distance underwater to hit the ship below the waterline. The guidance system for the Hs 293 series was the same as the Fritz-X unpowered munition; it used a Funkgerät FuG 203 Kehl radio control transmitter with a single two-axis joystick in the deploying bomber, and an FuG 230 Straßburg receiver in the munition.

Operational use

Following the capitulation of Italy in 1943, Germany damaged the Italian battleship Italia and sank the Roma with Fritz-X bombs. Attacks were also made on the USS Savannah, causing much damage and loss of life. HMS Warspite was hit by three Fritz-X, and although casualties were few, the ship had to be towed to Malta for repairs and was out of action for six months. The cruiser USS Philadelphia was very slightly damaged by several near misses from Fritz-X bombs. The light cruiser HMS Uganda was also hit and put out of action for thirteen months as a result.

A more widely employed weapon was the Henschel Hs 293, which included wings and a rocket motor to allow the bomb to glide some distance away from the launch aircraft. This weapon was designed for use against thinly armored but highly defended targets such as convoy merchantmen or their escorting warships. When launched, a small liquid-fueled rocket fired to speed the weapon up and get it out in front of the releasing aircraft, which was flown to approach the target just off to one side. The bomb then dropped close to the water and glided in parallel to the launch aircraft, with the bomb aimer adjusting the flight left or right. As long as the bomb was dropped at roughly the right range so it did not run out of altitude while gliding in, the system was easy to use, at least against slow-moving targets.

The Hs 293 was first used operationally in the Bay of Biscay against RN and RCN destroyers, sloops and frigates. Its combat debut was made on August 25, 1943, when the sloop HMS Bideford was slightly damaged by a missile which failed to fully detonate, but killed one crewman. Another sloop, HMS Landguard, survived a near miss with slight damage. The Germans attacked again two days later, sinking HMS Egret on August 27, 1943; they also seriously damaged HMCS Athabaskan. Over one-thousand Allied soldiers died on 25 November 1943 when a Hs 293 sank the troopship HMT Rohna from Mediterranean convoy KMF 26. [5]

Allied countermeasures

Several defensive measures were implemented right away. Ships capable of maneuvering at high speed were instructed to make tight turns across the weapon's flight path in order to complicate the missile operator's efforts. Attacking aircraft were interdicted with air patrols and heavy-caliber anti-aircraft weapons, disrupting either the visual or radio links to the guided weapons. Smoke was used to hide ships at anchor. Allied aircraft also attacked the home bases of the special German units equipped with these weapons, primarily (Gruppen II and III of Kampfgeschwader 100 and Gruppe II of Kampfgeschwader 40).

American, British and Canadian scientists also developed sophisticated radio jammers to disrupt the guidance signal. Ultimately nine different jamming systems were deployed in the European theater against these weapons. While early models proved inadequate, by the time the Allies were preparing for the invasion of France in 1944 more capable systems were deployed, and the success rate of guided weapons declined considerably. Even more important to the defeat of the weapons was Allied command of the airspace and the interception of incoming bombers by Allied fighter aircraft.

The Hs 293 was also used in August 1944 to attack bridges over the Sée and Sélune at the southern end of the Cherbourg peninsula in an attempt to break US general Patton's advance, but this mission was unsuccessful. A similar mission against bridges on the river Oder, designed to slow the Soviet advance into Germany, was made in April 1945 but failed.

The Germans also experimented with television guidance systems on the Hs 293D models. The use was problematic – as the bomb approaches the target, even tiny amounts of control input would cause the target to jump around the TV display, so much of the difficulty was in developing control systems that would become progressively less sensitive as the pilot required. A wire-guided version was also developed, but this Hs 293B variant was never deployed.

UK program

In 1939 Sir Dennistoun Burney and Nevil Shute Norway, worked together on an air-launched gliding torpedo, the "Toraplane", and a gliding bomb, "Doravane". Despite much work and many trials the Toraplane could not be launched with repeatable accuracy and it was abandoned in 1942.

US designs

The US Army Air Force started a wide-spanning development program of both glide bombs, known as "GB", and similar systems designed to fall more vertically, as "VG". Several models of both concepts were used in limited numbers during WWII.

The first to be used operationally was the Aeronca GB-1, essentially an autopilot attached to a small glider airframe carrying a bomb. It was intended to allow the 8th Air Force bombers to drop their payloads far from their targets and thus avoid having to overfly the most concentrated areas of anti-aircraft artillery fire. It was first used on 28 May 1944 against the Eifeltor marshalling yard in Cologne, but only 42 of 113 bombs released reached anywhere near the target; most "spun in and exploded 15 miles from the target... many of the batteries failed to hold [their] charge"). [6]

More advanced models in the GB series included the television guided GB-4, GB-5, GB-12, and GB-13, which used contrast-seekers for anti-ship use, and the command-guided GB-8, 'Azon', 'Razon', as well as the infrared-guided 'Felix'. US Navy glide bombs included the 'Bat' and its earlier variant, the 'Pelican'. The longer-range Bat used an active radar seeker and was used in the Pacific on August 13, 1944, but could not distinguish between targets in a cluttered environment and could be easily spoofed by even simple radar countermeasures.[ citation needed ] Only four examples of an experimental glide bomb, the 'Pratt-Read LBE', were produced.

Post-WWII developments

An F-16C releases an AGM-154 JSOW. The AGM-154 JSOW has a range of 12 nmi (22 km) for a low altitude launch, or 70 nmi (130 km) for a high altitude launch. AGM-154 03.jpg
An F-16C releases an AGM-154 JSOW. The AGM-154 JSOW has a range of 12 nmi (22 km) for a low altitude launch, or 70 nmi (130 km) for a high altitude launch.

After the war, the increasing sophistication of electronics allowed these systems to be developed as practical devices; from the 1960s air forces deployed a number of such systems, including the USAF's AGM-62 Walleye. Contrast seekers were also steadily improved, becoming very effective in the widely used AGM-65 Maverick missile. Both were standard systems until the 1980s when the development of laser guidance and GPS based systems made them unnecessary for all but the most accurate of roles. Various TV-based systems remain in limited service for super-accurate uses, but have otherwise been removed.

In the anti-ship role, direct attack from an aircraft even at long range became more dangerous due to the deployment of anti-aircraft missiles on ships. Weapons such as the Bat had ranges too short to keep the attacking aircraft out of range, especially in a force provided with air cover. This was addressed with the introduction of small jet engines that greatly extended the range, producing the anti-shipping missile class that remains widely used today.

HOPE/HOSBO of the Luftwaffe BGT Hosbo.jpg
HOPE/HOSBO of the Luftwaffe

Similarly, the need to attack well-defended targets such as airbases and military command posts led to the development of newer generations of glide bombs. European air forces use a glide package with a cluster bomb warhead for remotely attacking airbases. Laser and GPS guidance systems are used.

Notable glide bombs

A Russian FAB-3000 with a UMPK guidance kit attached, converting the unguided bomb into a glide bomb. FAB-3000 with UMPK kit.png
A Russian FAB-3000 with a UMPK guidance kit attached, converting the unguided bomb into a glide bomb.

See also

Related Research Articles

<span class="mw-page-title-main">Cruise missile</span> Guided missile with precision targeting capabilities and multiple launch platforms

A cruise missile is an unmanned self-propelled guided missile that sustains flight through aerodynamic lift for most of its flight path. Cruise missiles are designed to deliver a large payload over long distances with high precision. Modern cruise missiles are capable of traveling at high subsonic, supersonic, or hypersonic speeds, are self-navigating, and are able to fly on a non-ballistic, extremely low-altitude trajectory.

<span class="mw-page-title-main">Missile</span> Self-propelled guided weapon system

A missile is an airborne ranged weapon capable of self-propelled flight aided usually by a propellant, jet engine or rocket motor.

<span class="mw-page-title-main">Surface-to-air missile</span> Ground-launched missile designed to attack aerial targets

A surface-to-air missile (SAM), also known as a ground-to-air missile (GTAM) or surface-to-air guided weapon (SAGW), is a missile designed to be launched from the ground or the sea to destroy aircraft or other missiles. It is one type of anti-aircraft system; in modern armed forces, missiles have replaced most other forms of dedicated anti-aircraft weapons, with anti-aircraft guns pushed into specialized roles.

<span class="mw-page-title-main">GBU-15</span> Glide bomb

The Rockwell International Guided Bomb Unit 15 is an unpowered glide weapon used to destroy high-value enemy targets. It was designed for use with F-15E Strike Eagle, F-111 'Aardvark' and F-4 Phantom II aircraft. The GBU-15 has long-range maritime anti-ship capability with the B-52 Stratofortress.

<span class="mw-page-title-main">Wire-guided missile</span> Missile guided by command via wired connection

A wire-guided missile is a missile that is guided by signals sent to it via thin wires connected between the missile and its guidance mechanism, which is located somewhere near the launch site. As the missile flies, the wires are reeled out behind it. This guidance system is most commonly used in anti-tank missiles, where its ability to be used in areas of limited line-of-sight make it useful, while the range limit imposed by the length of the wire is not a serious concern.

<span class="mw-page-title-main">Fritz X</span> WWII radio guided bomb developed by Nazi Germany

Fritz X was a German guided anti-ship glide bomb used during World War II. Fritz X was the world's first precision guided weapon deployed in combat and the first to sink a ship in combat. Fritz X was a nickname used both by Allied and Luftwaffe personnel. Alternative names include Ruhrstahl SD 1400 X, Kramer X-1, PC 1400X or FX 1400.

<span class="mw-page-title-main">Henschel Hs 293</span> Anti-ship glide bomb

The Henschel Hs 293 was a World War II German radio-guided glide bomb. It is the first operational anti-shipping missile, first used unsuccessfully on 25 August 1943 and then with increasing success over the next year, damaging or sinking at least 25 ships. Allied efforts to jam the radio control link were increasingly successful despite German efforts to counter them. The weapon remained in use through 1944 when it was also used as an air-to-ground weapon to attack bridges to prevent the Allied breakout after D-Day, but proved almost useless in this role.

<span title="German-language text"><i lang="de">Wasserfall</i></span> German surface-to-air missile

The Wasserfall Ferngelenkte FlaRakete was a German guided supersonic surface-to-air missile project of World War II. Development was not completed before the end of the war and it was not used operationally.

<span class="mw-page-title-main">AGM-12 Bullpup</span> Air-to-ground command guided missile

The AGM-12 Bullpup is a short-range air-to-ground missile developed by Martin Marietta for the US Navy. It is among the earliest precision guided air-to-ground weapons and the first to be mass produced. It first saw operational use in 1959 on the A-4 Skyhawk, but soon found use on the A-6 Intruder, F-100 Super Sabre, F-105 Thunderchief, F-4 Phantom II, F-8 Crusader, and P-3 Orion in both Navy and US Air Force service, as well as NATO allies. The weapon was guided manually via a small joystick in the aircraft cockpit, which presented a number of problems and its ultimate accuracy was on the order of 10 metres (33 ft), greater than desired. In the 1960s it was increasingly supplanted by fully automatic weapons like the AGM-62 Walleye and AGM-65 Maverick.

<span class="mw-page-title-main">ASM-N-2 Bat</span> U.S. World War II glide bomb

The ASM-N-2 Bat was a United States Navy World War II radar-guided glide bomb which was used in combat beginning in April 1945. It was developed and overseen by a unit within the National Bureau of Standards with assistance from the Navy's Bureau of Ordnance, the Massachusetts Institute of Technology, and Bell Telephone Laboratories. It is considered to be the first fully automated guided missile used in combat.

<span class="mw-page-title-main">Guided bomb</span> Bomb controllable from an external device

A guided bomb is a precision-guided munition designed to achieve a smaller circular error probable (CEP).

<span class="mw-page-title-main">Kh-59</span> Russian cruise missile

The Kh-59 Ovod is a Russian cruise missile with a two-stage solid-fuel propulsion system and 200 km range. The Kh-59M Ovod-M is a variant with a bigger warhead and turbojet engine. It is primarily a land-attack missile; the Kh-59MK variant targets ships.

<span class="mw-page-title-main">Henschel Hs 294</span> Aerial bomb

The Henschel Hs 294 was a guided air-to-sea missile developed by Henschel Flugzeug-Werke in Germany during World War II.

<span class="mw-page-title-main">Project Kingfisher</span> Anti-ship missiles

Project Kingfisher was a weapons-development program initiated by the United States Navy during the latter part of World War II. Intended to provide aircraft and surface ships with the ability to deliver torpedoes to targets from outside the range of defensive armament, six different missile concepts were developed; four were selected for full development programs, but only one reached operational service.

<span class="mw-page-title-main">LBD Gargoyle</span> Anti-ship missile / guided bomb

The LBD-1 Gargoyle was an American air-to-surface missile developed during World War II by McDonnell Aircraft for the United States Navy. One of the precursors of modern anti-ship missiles, it was extensively used as a test vehicle during the late 1940s.

<span class="mw-page-title-main">Precision-guided munition</span> "Smart bombs", used to strike targets precisely

A precision-guided munition (PGM), also called a smart weapon, smart munition, or smart bomb, is a type of weapon system that integrates advanced guidance and control systems, such as GPS, laser guidance, or infrared sensors, with various types of munitions, typically missiles or artillery shells, to allow for high-accuracy strikes against designated targets. PGMs are designed to precisely hit a predetermined target, typically with a margin of error that is far smaller than conventional unguided munitions. Unlike unguided munitions, PGMs use active or passive control mechanisms capable of steering the weapon towards its intended target. PGMs are capable of mid-flight course corrections, allowing them to adjust and hit the intended target even if conditions change. PGMs can be deployed from various platforms, including aircraft, naval ships, ground vehicles, ground-based launchers, and UAVs. PGMs are primarily used in military operations to achieve greater accuracy, particularly in complex or sensitive environments, to reduce the risk to operators, lessen civilian harm, and minimize collateral damage. PGMs are considered an element of modern warfare to reduce unintended damage and civilian casualties. It is widely accepted that PGMs significantly outperform unguided weapons, particularly against fortified or mobile targets.

The Vickers Blue Boar was a family of British air-launched television-guided glide bombs of the 1950s which was cancelled during development. A key role was as an anti-shipping missile, using its guidance system to attack the moving targets. It would also replace unguided bombs between 5,000 and 10,000 lb against point targets, or be equipped with a nuclear warhead. A smaller 1,000 lb (450 kg) version was also developed for testing. The name is a randomly assigned rainbow code.

Television guidance (TGM) is a type of missile guidance system using a television camera in the missile or glide bomb that sends its signal back to the launch platform. There, a weapons officer or bomb aimer watches the image on a television screen and sends corrections to the missile, typically over a radio control link. Television guidance is not a seeker because it is not automated, although semi-automated systems with autopilots to smooth out the motion are known. They should not be confused with contrast seekers, which also use a television camera but are true automated seeker systems.

The Kehl-Straßburg radio control link was a German MCLOS radio control system of World War II. The system was named for Strasbourg, the French/German city on the Rhine and Kehl, at the time a suburb of Strasbourg. It was used by the Fritz X guided bomb and the Henschel Hs 293 guided missile, and would also be trialled in test of the Henschel Hs 298 MCLOS-guidance air-to-air missile.

<span class="mw-page-title-main">Pelican (bomb)</span> WW2 era American guided bomb

The Pelican, also known as Bomb Mark 55 and, in one version, SWOD Mark 7, was a guided bomb developed by the United States Navy during World War II. Guided by semi-active radar homing, Pelican was produced in 1,000 lb (450 kg) and 1,500 lb (680 kg) sizes; the program reached the stage of live trials before being cancelled.

References

  1. Wragg, David W. (1973). A Dictionary of Aviation (first ed.). Osprey. p. 143. ISBN   9780850451634.
  2. 1 2 Gettleman, Jeffrey; Schmitt, Eric (May 25, 2023). "Russia's Old Bombs Elude Ukraine's Modern Defenses". The New York Times. Archived from the original on June 15, 2023. Retrieved July 3, 2023.
  3. E.R. Johnson (14 May 2012). American Attack Aircraft Since 1926. McFarland. p. 435. ISBN   978-0-7864-5189-0.
  4. Zeitschrift für Flugwissenschaften und Weltraumforschung. 5–6: 135–36. 1957–58.{{cite journal}}: Missing or empty |title= (help)[ dubious discuss ]
  5. Blair, Clay (1998). Hitler's U-Boat War: The Hunted 1942–1945. Vol. 2. New York: Random House. p. 457. ISBN   978-0-679-45742-8.
  6. Johnson, Richard Riley (1995). Twenty Five Milk Runs (and a few others): To Hell's Angels and back. Victoria, CA: Trafford. pp. 105–8. ISBN   978-1-4120-2501-0. wings and a double-boom tail mounted on a two thousand-pound bomb... depended on inertial guidance for directional control after release. This consisted of a series of gyroscopes driven by a battery. ...twelve foot wingspan... almost twelve feet long... The glide ratio of these bombs was an amazing five to one. ...many of the batteries failed to hold [their] charge... The date was May 28, 1944, not the 25th as Martin Caidin reports in his book, "The Forts." This same mistake appears in Polmer and Allen's encyclopedia, "World War II. America at War, 1941–1945."
  7. "Military briefing: Russian 'glide bombs' pound Ukrainian troops and towns" . Financial Times . Archived from the original on 2024-04-23. Retrieved 2024-04-23.
  8. Fisher Jr., Richard (29 October 2004). "Report On the International Defense Exhibition and Seminar (IDEAS)". International Assessment and Strategy Center (IASC). Archived from the original on 5 July 2014. Retrieved 26 June 2009.
  9. Ansari, Usman. "The JF-17 Thunder: A hefty punch at an affordable price". Archived from the original on 17 July 2011.
  10. "South African missiles/rockets/PGM's". 9 January 2014. Retrieved 3 December 2019. Pakistan is fairly open about them having it, see one of their squadron's paintings below clearly depicting Raptor II being launched from one of their Mirages.
  11. "Army 2016: Russia to complete trials of cluster bomb | Jane's 360". Archived from the original on September 7, 2017. Retrieved September 6, 2017.
  12. "New Russian D-30SN Glide Munition Better than GBU-39 Small Diameter Bomb?". www.defensemirror.com. Retrieved 12 October 2024.

Commons-logo.svg Media related to Glide bombs at Wikimedia Commons