Translation plane

Last updated

In mathematics, a translation plane is a projective plane which admits a certain group of symmetries (described below). Along with the Hughes planes and the Figueroa planes, translation planes are among the most well-studied of the known non-Desarguesian planes, and the vast majority of known non-Desarguesian planes are either translation planes, or can be obtained from a translation plane via successive iterations of dualization and/or derivation. [1]

Contents

In a projective plane, let P represent a point, and l represent a line. A central collineation with centerP and axisl is a collineation fixing every point on l and every line through P. It is called an elation if P is on l, otherwise it is called a homology. The central collineations with center P and axis l form a group. [2] A line l in a projective plane Π is a translation line if the group of all elations with axis l acts transitively on the points of the affine plane obtained by removing l from the plane Π, Πl (the affine derivative of Π). A projective plane with a translation line is called a translation plane.

The affine plane obtained by removing the translation line is called an affine translation plane. While it is often easier to work with projective planes, in this context several authors use the term translation plane to mean affine translation plane. [3] [4]

Algebraic construction with coordinates

Every projective plane can be coordinatized by at least one planar ternary ring. [5] For translation planes, it is always possible to coordinatize with a quasifield. [6] However, some quasifields satisfy additional algebraic properties, and the corresponding planar ternary rings coordinatize translation planes which admit additional symmetries. Some of these special classes are:

Given a quasifield with operations + (addition) and (multiplication), one can define a planar ternary ring to create coordinates for a translation plane. However, it is more typical to create an affine plane directly from the quasifield by defining the points as pairs where and are elements of the quasifield, and the lines are the sets of points satisfying an equation of the form , as and vary over the elements of the quasifield, together with the sets of points satisfying an equation of the form , as varies over the elements of the quasifield. [7]

Geometric construction with spreads (Bruck/Bose)

Translation planes are related to spreads of odd-dimensional projective spaces by the Bruck-Bose construction. [8] A spread of PG(2n+1, K), where is an integer and K a division ring, is a partition of the space into pairwise disjoint n-dimensional subspaces. In the finite case, a spread of PG(2n+1, q) is a set of qn+1 + 1n-dimensional subspaces, with no two intersecting.

Given a spread S of PG(2n +1, K), the Bruck-Bose construction produces a translation plane as follows: Embed PG(2n+1, K) as a hyperplane of PG(2n+2, K). Define an incidence structure A(S) with "points," the points of PG(2n+2, K) not on and "lines" the (n+1)-dimensional subspaces of PG(2n+2, K) meeting in an element of S. Then A(S) is an affine translation plane. In the finite case, this procedure produces a translation plane of order qn+1.

The converse of this statement is almost always true. [9] Any translation plane which is coordinatized by a quasifield that is finite-dimensional over its kernel K (K is necessarily a division ring) can be generated from a spread of PG(2n+1, K) using the Bruck-Bose construction, where (n+1) is the dimension of the quasifield, considered as a module over its kernel. An instant corollary of this result is that every finite translation plane can be obtained from this construction.

Algebraic construction with spreads (André)

André [10] gave an earlier algebraic representation of (affine) translation planes that is fundamentally the same as Bruck/Bose. Let V be a 2n-dimensional vector space over a field F. A spread of V is a set S of n-dimensional subspaces of V that partition the non-zero vectors of V. The members of S are called the components of the spread and if Vi and Vj are distinct components then ViVj = V. Let A be the incidence structure whose points are the vectors of V and whose lines are the cosets of components, that is, sets of the form v + U where v is a vector of V and U is a component of the spread S. Then: [11]

A is an affine plane and the group of translations xx + w for w in V is an automorphism group acting regularly on the points of this plane.

The finite case

Let F = GF(q) = Fq, the finite field of order q and V the 2n-dimensional vector space over F represented as:

Let M0, M1, ..., Mqn - 1 be n × n matrices over F with the property that MiMj is nonsingular whenever ij. For i = 0, 1, ...,qn – 1 define,

usually referred to as the subspaces "y = xMi". Also define:

the subspace "x = 0".

The set {V0, V1, ..., Vqn} is a spread of V.

The set of matrices Mi used in this construction is called a spread set, and this set of matrices can be used directly in the projective space to create a spread in the geometric sense.

Reguli and regular spreads

Let be the projective space PG(2n+1, K) for an integer, and K a division ring. A regulus [12] R in is a collection of pairwise disjoint n-dimensional subspaces with the following properties:

  1. R contains at least 3 elements
  2. Every line meeting three elements of R, called a transversal, meets every element of R
  3. Every point of a transversal to R lies on some element of R

Any three pairwise disjoint n-dimensional subspaces in lie in a unique regulus. [13] A spread S of is regular if for any three distinct n-dimensional subspaces of S, all the members of the unique regulus determined by them are contained in S. For any division ring K with more than 2 elements, if a spread S of PG(2n+1, K) is regular, then the translation plane created by that spread via the André/Bruck-Bose construction is a Moufang plane. A slightly weaker converse holds: if a translation plane is Pappian, then it can be generated via the André/Bruck-Bose construction from a regular spread. [14]

In the finite case, K must be a field of order , and the classes of Moufang, Desarguesian and Pappian planes are all identical, so this theorem can be refined to state that a spread S of PG(2n+1, q) is regular if and only if the translation plane created by that spread via the André/Bruck-Bose construction is Desarguesian.

In the case where K is the field , all spreads of PG(2n+1, 2) are trivially regular, since a regulus only contains three elements. While the only translation plane of order 8 is Desarguesian, there are known to be non-Desarguesian translation planes of order 2e for every integer . [15]

Families of non-Desarguesian translation planes

Finite translation planes of small order

It is well known that the only projective planes of order 8 or less are Desarguesian, and there are no known non-Desarguesian planes of prime order. [16] Finite translation planes must have prime power order. There are four projective planes of order 9, of which two are translation planes: the Desarguesian plane, and the Hall plane. The following table details the current state of knowledge:

OrderNumber of Non-Desarguesian

Translation Planes

91
167 [17] [18]
2520 [19] [20] [21]
276 [22] [23]
32≥8 [24]
491346 [25] [26]
64≥2833 [27]

Notes

  1. Eric Moorhouse has performed extensive computer searches to find projective planes. For order 25, Moorhouse has found 193 projective planes, 180 of which can be obtained from a translation plane by iterated derivation and/or dualization. For order 49, the known 1349 translation planes give rise to more than 309,000 planes obtainable from this procedure.
  2. Geometry Translation Plane Retrieved on June 13, 2007
  3. Hughes & Piper 1973 , p. 100
  4. Johnson, Jha & Biliotti 2007 , p. 5
  5. Hall 1943
  6. There are many ways to coordinatize a translation plane which do not yield a quasifield, since the planar ternary ring depends on the quadrangle on which one chooses to base the coordinates. However, for translation planes there is always some coordinatization which yields a quasifield.
  7. Dembowski 1968 , p. 128. Note that quasifields are technically either left or right quasifields, depending on whether multiplication distributes from the left or from the right (semifields satisfy both distributive laws). The definition of a quasifield in Wikipedia is a left quasifield, while Dembowski uses right quasifields. Generally this distinction is elided, since using a chirally "wrong" quasifield simply produces the dual of the translation plane.
  8. Bruck & Bose 1964
  9. Bruck & Bose 1964 , p. 97
  10. André 1954
  11. Moorhouse 2007 , p. 13
  12. This notion generalizes that of a classical regulus, which is one of the two families of ruling lines on a hyperboloid of one sheet in 3-dimensional space
  13. Bruck & Bose 1966 , p. 163
  14. Bruck & Bose 1966 , p. 164, Theorem 12.1
  15. Knuth 1965 , p. 541
  16. "Projective Planes of Small Order". ericmoorhouse.org. Retrieved 2020-11-08.
  17. "Projective Planes of Order 16". ericmoorhouse.org. Retrieved 2020-11-08.
  18. Reifart 1984
  19. "Projective Planes of Order 25". ericmoorhouse.org. Retrieved 2020-11-08.
  20. Dover 2019
  21. Czerwinski & Oakden 1992
  22. "Projective Planes of Order 27". ericmoorhouse.org. Retrieved 2020-11-08.
  23. Dempwolff 1994
  24. "Projective Planes of Order 32". ericmoorhouse.org. Retrieved 2020-11-08.
  25. Mathon & Royle 1995
  26. "Projective Planes of Order 49". ericmoorhouse.org. Retrieved 2020-11-08.
  27. McKay & Royle 2014. This is a complete count of the 2-dimensional non-Desarguesian translation planes; many higher-dimensional planes are known to exist.

Related Research Articles

<span class="mw-page-title-main">Euclidean space</span> Fundamental space of geometry

Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their dimension. For n equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics.

<span class="mw-page-title-main">Projective plane</span> Geometric concept of a 2D space with a "point at infinity" adjoined

In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point.

<span class="mw-page-title-main">Affine transformation</span> Geometric transformation that preserves lines but not angles nor the origin

In Euclidean geometry, an affine transformation or affinity is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.

<span class="mw-page-title-main">Projective space</span> Completion of the usual space with "points at infinity"

In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines.

<span class="mw-page-title-main">Finite geometry</span> Geometric system with a finite number of points

A finite geometry is any geometric system that has only a finite number of points. The familiar Euclidean geometry is not finite, because a Euclidean line contains infinitely many points. A geometry based on the graphics displayed on a computer screen, where the pixels are considered to be the points, would be a finite geometry. While there are many systems that could be called finite geometries, attention is mostly paid to the finite projective and affine spaces because of their regularity and simplicity. Other significant types of finite geometry are finite Möbius or inversive planes and Laguerre planes, which are examples of a general type called Benz planes, and their higher-dimensional analogs such as higher finite inversive geometries.

<span class="mw-page-title-main">Affine space</span> Euclidean space without distance and angles

In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. Affine space is the setting for affine geometry.

In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry.

In geometry, an affine plane is a system of points and lines that satisfy the following axioms:

<span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

In geometry, a three-dimensional space is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region, a solid figure.

<span class="mw-page-title-main">Oval (projective plane)</span> Circle-like pointset in a geometric plane

In projective geometry an oval is a point set in a plane that is defined by incidence properties. The standard examples are the nondegenerate conics. However, a conic is only defined in a pappian plane, whereas an oval may exist in any type of projective plane. In the literature, there are many criteria which imply that an oval is a conic, but there are many examples, both infinite and finite, of ovals in pappian planes which are not conics.

A maximal arc in a finite projective plane is a largest possible (k,d)-arc in that projective plane. If the finite projective plane has order q (there are q+1 points on any line), then for a maximal arc, k, the number of points of the arc, is the maximum possible (= qd + d - q) with the property that no d+1 points of the arc lie on the same line.

<span class="mw-page-title-main">Point reflection</span> Geometric symmetry operation

In geometry, a point reflection is a transformation of affine space in which every point is reflected across a specific fixed point. When dealing with crystal structures and in the physical sciences the terms inversion symmetry, inversion center or centrosymmetric are more commonly used.

In mathematics, a non-Desarguesian plane is a projective plane that does not satisfy Desargues' theorem, or in other words a plane that is not a Desarguesian plane. The theorem of Desargues is true in all projective spaces of dimension not 2; in other words, the only projective spaces of dimension not equal to 2 are the classical projective geometries over a field. However, David Hilbert found that some projective planes do not satisfy it. The current state of knowledge of these examples is not complete.

In mathematics, André planes are a class of finite translation planes found by André. The Desarguesian plane and the Hall planes are examples of André planes; the two-dimensional regular nearfield planes are also André planes.

<span class="mw-page-title-main">Galois geometry</span> Branch of finite geometry

Galois geometry is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field. More narrowly, a Galois geometry may be defined as a projective space over a finite field.

In mathematics, a Hall plane is a non-Desarguesian projective plane constructed by Marshall Hall Jr. (1943). There are examples of order p2n for every prime p and every positive integer n provided p2n > 4.

In geometry, specifically projective geometry, a blocking set is a set of points in a projective plane that every line intersects and that does not contain an entire line. The concept can be generalized in several ways. Instead of talking about points and lines, one could deal with n-dimensional subspaces and m-dimensional subspaces, or even more generally, objects of type 1 and objects of type 2 when some concept of intersection makes sense for these objects. A second way to generalize would be to move into more abstract settings than projective geometry. One can define a blocking set of a hypergraph as a set that meets all edges of the hypergraph.

In geometry, a unital is a set of n3 + 1 points arranged into subsets of size n + 1 so that every pair of distinct points of the set are contained in exactly one subset. This is equivalent to saying that a unital is a 2-(n3 + 1, n + 1, 1) block design. Some unitals may be embedded in a projective plane of order n2 (the subsets of the design become sets of collinear points in the projective plane). In this case of embedded unitals, every line of the plane intersects the unital in either 1 or n + 1 points. In the Desarguesian planes, PG(2,q2), the classical examples of unitals are given by nondegenerate Hermitian curves. There are also many non-classical examples. The first and the only known unital with non prime power parameters, n=6, was constructed by Bhaskar Bagchi and Sunanda Bagchi. It is still unknown if this unital can be embedded in a projective plane of order 36, if such a plane exists.

Topological geometry deals with incidence structures consisting of a point set and a family of subsets of called lines or circles etc. such that both and carry a topology and all geometric operations like joining points by a line or intersecting lines are continuous. As in the case of topological groups, many deeper results require the point space to be (locally) compact and connected. This generalizes the observation that the line joining two distinct points in the Euclidean plane depends continuously on the pair of points and the intersection point of two lines is a continuous function of these lines.

A frequently studied problem in finite geometry is to identify ways in which an object can be covered by other simpler objects such as points, lines, and planes. In projective geometry, a specific instance of this problem that has numerous applications is determining whether, and how, a projective space can be covered by pairwise disjoint subspaces which have the same dimension; such a partition is called a spread. Specifically, a spread of a projective space , where is an integer and a division ring, is a set of -dimensional subspaces, for some such that every point of the space lies in exactly one of the elements of the spread.

References

Further reading