Trimethyldiborane

Last updated
Trimethyldiborane
Trimethyldiborane.svg
Names
IUPAC name
1,1,2-Trimethyldiborane
Other names
Trimethyldiborane(6)
Identifiers
3D model (JSmol)
  • InChI=1S/C3H12B2/c1-4-6-5(2,3)7-4/h4H,1-3H3
    Key: JDPNBQILNNVWNW-UHFFFAOYSA-N
  • C[B]1(C)[H][BH](C)[H]1
Properties
(CH
3
)
3
B
2
H
3
Molar mass 69.75 g mol−1
AppearanceColorless pyrophoric liquid
Melting point −122.9 °C (−189.2 °F; 150.2 K)
Boiling point 45.5 °C (113.9 °F; 318.6 K)
Thermochemistry
48 kcal/mol
Related compounds
Related alkyl boranes
trimethylborane
tetramethyldiborane
dimethyldiborane
methyldiborane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN (what is  Yes check.svgYX mark.svgN ?)

Trimethyldiborane, (CH3)3B2H3 is a molecule containing boron carbon and hydrogen. It is an alkylborane, consisting of three methyl group substituted for a hydrogen in diborane. It can be considered a mixed dimer: (CH3)2BH2BH(CH3) or dimethylborane and methylborane. [1] called 1,2-dimethyldiborane. [2] Other combinations of methylation occur on diborane, including monomethyldiborane, 1,2-dimethyldiborane, tetramethyldiborane, 1,1-dimethylborane and trimethylborane. At room temperature the substance is at equilibrium between these forms, so it is difficult to keep it pure. [3] The methylboranes were first prepared by H. I. Schlesinger and A. O. Walker in the 1930s. [4] [5]

Contents

Formation

Trimethylborane is formed by the reaction of diborane and trimethylborane. This reaction produces four different substitution of methyl with hydrogen on diborane. Produced is 1-methyldiborane, 1,1-dimethyldborane, 1,1,2-trimethyldiborane and 1,1,2,2-tetramethyldiborane. By reacting monomethyldiborane with ether, dimethylether borine is formed [(CH3)2O].BH3 leaving methylborane which rapidly dimerises to 1,2-dimethyldiborane. [3] The reaction is complex. [6] The yield of trimethyldiborane is maximised with ratio of 1 of diborane to 3 of trimethylborane. [7]

Tetramethyl lead can react with diborane in a 1,2-dimethoxyethane solvent at room temperature to make a range of methyl substituted diboranes, ending up at trimethylborane, but including 1,1-di, tridiborane. The other outputs of the reaction are hydrogen gas and lead metal. [8]

Other methods to form methyldiboranes include reacting hydrogen with trimethylborane between 80 and 200 °C under pressure, or reacting a metal borohydride with trimethylborane in the presence of hydrogen chloride, aluminium chloride or boron trichloride. If the borohydride is sodium borohydride, then methane is a side product. If the metal is lithium then no methane is produced. [4] Dimethylchloroborane and methyldichloroborane are also produced as gaseous products. [4]

When Cp2Zr(CH3)2 reacts with borane dissolved in tetrahydrofuran, a borohydro group inserts into the zirconium carbon bond, and methyl diboranes are produced. [9]

Properties

Trimethyldiborane has two methyl groups on one boron atom, and one methyl and a hydrogen on the second boron atom. A bridge of two hydrogen atoms links the boron atoms together. The molecule is expected to have a Cs point group due to rapid rotation of the methyls. The infrared spectrum of trimethyldiborane has a strong absorption band at 2509 cm−1 due to the non-bridge boron-hydrogen bond. [10] It has a vapour pressure of 51 mm Hg at -22.8 °C; 61 mm Hg at -18.4 °C and [7] 83 mm Hg at 0 °C. [11] Vapour pressure can be approximated by Log P = 7.673 - (1527/T). [12] The boiling point is 45.5 °C, and the melting point is -122.9. [12]

The predicted heat of formation for liquid trimethyldiborane is ΔH0f=-48 kcal/mol, and for the gas -41 kcal/mol. Heat of vapourisation ΔHvap was measured at 7.0 kcal/mol. [13]

A gas chromatograph can be used to determine the amounts of the methyl boranes in a mixture. The order they pass through are diborane, monomethyldiborane, trimethylborane, 1,1-dimethyldiborane, 1,2-dimethyldiborane, trimethyldiborane, and lastly tetramethyldiborane. [14]

The nuclear resonance shift for the bridge hydrogen is 9.27 ppm, compared to 10.49 for diborane. [15]

Reactions

Trimethyldiborane partially disproportionates over a period of hours at room temperature to yield tetramethyldiborane and 1,2-dimethyldiborane. Over a period of weeks 1,1-dimethyldiborane appears as well. [16]

3[1,1-(CH3)3B2H4] 2 (CH3)3B2H3 + B2H6 K=0.00027 [17]
4(CH3)3B2H3 (CH3)4B2H2 + B2H6 K=0.0067 [17]

Trimethyldiborane is hydrolyzed in water to methylboronic acid CH3B(OH)2 and dimethylborinic acid (CH3)2B(OH). [3]

Trimethyldiborane spontaneously inflames when exposed to air. [18]

Trimethyldiborane reacts with liquid ammonia initially forming methylborohydride anions and (CH3)2B(N3)2+ cations. [19] [20] [21]

Trimethylborane (CH3)3B has a similar-sounding name, and many similar properties, but only has one boron atom. [4] Trimethylhydroborate (CH3)3BH is an anion with one boron atom. It can form a lithium salt. [22]

References

  1. Srebnik, Morris; Cole, Thomas E.; Brown, Herbert C. (January 1987). "Methylborane - a remarkable unhindered monoalkylborane which achieves the controlled sequential hydroboration of representative alkenes". Tetrahedron Letters. 28 (33): 3771–3774. doi:10.1016/s0040-4039(00)96380-9.
  2. Low, M. J. D. (1968). "Characteristic Infrared Frequencies of Methyldiboranes". The Journal of Chemical Physics. 48 (5): 2386–2387. Bibcode:1968JChPh..48.2386L. doi:10.1063/1.1669454.
  3. 1 2 3 Bell, R. P.; Emeléus, H. J. (1948). "The boron hydrides and related compounds". Quarterly Reviews, Chemical Society. 2 (2): 132. doi:10.1039/QR9480200132.
  4. 1 2 3 4 Long, L. H.; Wallbridge, M. G. H. (1965). "646. The chemistry of boron. Part VI. New preparative methods and decomposition studies relating to methyldiboranes" . Journal of the Chemical Society (Resumed): 3513–3520. doi:10.1039/JR9650003513.(subscription required)
  5. Schlesinger, H. I.; Walker, A. O. (April 1935). "Hydrides of Boron. IV. The Methyl Derivatives of Diborane". Journal of the American Chemical Society. 57 (4): 621–625. Bibcode:1935JAChS..57..621S. doi:10.1021/ja01307a009.
  6. van Aalten, Lloyd; Seely, G. R.; Oliver, Juhn; Ritter, D. M. (1 June 1961). Kinetics and Equilibria in the Alkylation of Diborane Preliminary Report (PDF). Advances in Chemistry. Vol. 32. American Chemical Society. pp. 107–114. doi:10.1021/ba-1961-0032.ch012. ISBN   0-8412-0033-5.{{cite book}}: ISBN / Date incompatibility (help)
  7. 1 2 Carpenter, J.H.; Jones, W.J.; Jotham, R.W.; Long, L.H. (September 1971). "The Raman spectra of the methyldiboranes—II Monomethyldiborane and trimethyldiborane, and characteristic frequencies of the methyldiboranes". Spectrochimica Acta Part A: Molecular Spectroscopy. 27 (9): 1721–1734. Bibcode:1971AcSpA..27.1721C. doi: 10.1016/0584-8539(71)80227-1 .
  8. Holliday, A.K.; N. Jessop, G. (November 1967). "The reaction of tetramethyllead with diborane". Journal of Organometallic Chemistry. 10 (2): 291–293. doi:10.1016/s0022-328x(00)93089-4.
  9. Marsella, John A.; Caulton, Kenneth G. (May 1982). "Dealkylation of zirconium(IV) by borane: the intimate mechanism of an alkyl transfer reaction". Journal of the American Chemical Society. 104 (9): 2361–2365. Bibcode:1982JAChS.104.2361M. doi:10.1021/ja00373a005.
  10. Cowan, R. D. (1949). "The Infra-Red Spectra of Borine Carbonyl and Tetramethyldiborane". The Journal of Chemical Physics. 17 (2): 218. Bibcode:1949JChPh..17..218C. doi:10.1063/1.1747225.
  11. Lamneck, John H. Jr; Kaye, Samuel (4 September 1958). "Thermal reaction of diborane with trimethylborane". National Advisory Committee for Aeronautics.
  12. 1 2 Onak, Thomas (1 January 1966). Stone, F. G. A.; West, Robert (eds.). Advances in Organometallic Chemistry. New York, London: Academic Press. p. 284. ISBN   9780080580043 . Retrieved 14 August 2015.
  13. Altschuller, Aubrey P. (4 October 1955). "Calculated Heats of Formation and Combustion of Boron Compounds (Boron, Hydrogen, Carbon, Silicon)" (PDF). NACA Research Memorandum. Cleveland, Ohio: National Advisory Committee for Aeronautics. p. 22. Retrieved 14 August 2015.
  14. Seely, G. R.; Oliver, J. P.; Ritter, D. M. (December 1959). "Gas-Liquid Chromatographic Analysis of Mixtures Containing Methyldiboranes". Analytical Chemistry. 31 (12): 1993–1995. doi:10.1021/ac60156a032.
  15. Leach, John B.; Ungermann, Charles B.; Onak, Thomas P. (January 1972). "Proton magnetic resonance studies on methyl and chloro substituted diboranes". Journal of Magnetic Resonance. 6 (1): 74–83. Bibcode:1972JMagR...6...74L. doi:10.1016/0022-2364(72)90088-1.
  16. Lehmann, Walter J.; Wilson, Charles O.; Shapiro, I. (1961). "Infrared Spectra of Alkyldiboranes. V. Tri- and Tetramethyl- and Ethyldiboranes". The Journal of Chemical Physics. 34 (3): 783. Bibcode:1961JChPh..34..783L. doi:10.1063/1.1731675.
  17. 1 2 Onak, Thomas (1 January 1966). "Carboranes and Organo-Substituted Boron Hydrides". In Stone, F. G. A.; West, Robert (eds.). Advances in Organometallic Chemistry. New York, London: Academic Press. p. 284. ISBN   9780080580043 . Retrieved 19 August 2015.
  18. Urben, Peter; Pitt, M. J., eds. (2007). Bretherick's Handbook of Reactive Chemical Hazards (7th ed.). Amsterdam: Elsevier. p. 527. ISBN   978-0-12-373945-2.
  19. Jungfleisch, Francis (1973). "Reactions of Methyl Substituted Diboranes and 2,2-Dimethyltetraborane with Amine Bases". Ohio State University. p. 64. Retrieved 15 August 2015.
  20. Sheldon, J. C.; Smith, B. C. (1960). "The borazoles". Quarterly Reviews, Chemical Society. 14 (2): 202. doi:10.1039/QR9601400200.
  21. Schlesinger, H. I.; Horvitz, Leo; Burg, A. B. (March 1936). "Hydrides of Boron. VI. The Action of Ammonia on the Methyl Diboranes". Journal of the American Chemical Society. 58 (3): 409–414. Bibcode:1936JAChS..58..409S. doi:10.1021/ja01294a008.
  22. "inorganic materials research division - The Berkeley Lab" (PDF).

Extra reading