Layers of Pascal's pyramid derived from coefficients in an upside-down ternary plot of the terms in the expansions of the powers of a trinomial –the number of terms is clearly a triangular number
In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by
where n is a nonnegative integer and the sum is taken over all combinations of nonnegative indices i, j, and k such that i + j + k = n.[1] The trinomial coefficients are given by
The trinomial expansion can be calculated by applying the binomial expansion twice, setting , which leads to
Above, the resulting in the second line is evaluated by the second application of the binomial expansion, introducing another summation over the index .
The product of the two binomial coefficients is simplified by shortening ,
and comparing the index combinations here with the ones in the exponents, they can be relabelled to , which provides the expression given in the first paragraph.
Properties
The number of terms of an expanded trinomial is the triangular number
where n is the exponent to which the trinomial is raised.[3]
↑Rosenthal, E. R. (1961), "A Pascal pyramid for trinomial coefficients", The Mathematics Teacher, 54 (5): 336–338, doi:10.5951/MT.54.5.0336 .
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.