This article is written like a debate.(June 2022) |
This article contains a pro and con list .(June 2022) |
The triune brain is a model of the evolution of the vertebrate forebrain and behavior, proposed by the American physician and neuroscientist Paul D. MacLean in the 1960s. The triune brain consists of the reptilian complex (basal ganglia), the paleomammalian complex (limbic system), and the neomammalian complex (neocortex), viewed each as independently conscious, and as structures sequentially added to the forebrain in the course of evolution. According to the model, the basal ganglia are in charge of primal instincts, the limbic system is in charge of emotions, and the neocortex is responsible for objective or rational thoughts.
Since the 1970s, the concept of the triune brain has been subject to criticism in evolutionary and developmental neuroscience [1] and is regarded as a myth. [2] Although it overlaps in some respects with contemporary understanding of the brain, [3] the triune brain hypothesis is no longer espoused by comparative neuroscientists in the post-2000 era [4] due to harsh criticism against it. [5]
MacLean originally formulated his model in the 1960s and propounded it at length in his 1990 book The Triune Brain in Evolution. The triune brain hypothesis became familiar to a broad popular audience through Carl Sagan's Pulitzer Prize winning 1977 book The Dragons of Eden .
"Reptilian complex" (also known as the "R-complex", "reptilian brain" or "lizard brain") was the name MacLean gave to the basal ganglia, structures derived from the floor of the forebrain during development. The term derives from the idea that comparative neuroanatomists once believed that the forebrains of reptiles and birds were dominated by these structures. MacLean proposed that the reptilian complex was responsible for species-typical instinctual behaviours involved in aggression, dominance, territoriality, and ritual displays. [6]
This consists of the septum, amygdalae, hypothalamus, hippocampal complex, and cingulate cortex. MacLean first introduced the term "limbic system" to refer to this set of interconnected brain structures in a paper in 1952. MacLean's recognition of the limbic system as a major functional system in the brain was widely accepted among neuroscientists, and is generally regarded as his most important contribution to the field. MacLean maintained that the structures of the limbic system arose early in mammalian evolution (hence "paleomammalian", with paleo- meaning old) and were responsible for the motivation and emotion involved in feeding, reproductive behaviour, and parental behaviour. [ citation needed ]
This consists of the cerebral neocortex, a structure found uniquely in higher mammals, and especially humans. MacLean regarded its addition as the most recent step in the evolution of the mammalian brain, conferring the ability for language, abstraction, planning, and perception. [ citation needed ]
The triune brain model argues that these structures are relatively independent from one another, but that they are still connected to each other in some form or another. [7]
The model views different cognitive behaviors as caused by three different entities instead of one. The reptilian complex is said to control all of the instinctual and impulsive actions, while the neomammalian complex is responsible for keeping the primitive instincts constrained. An example is controlling the impulse of eating. It seems that if one is hungry, then that means the reptilian complex is commanding the body to eat. However, an individual has the rational choice not to eat when hungry, and this rational thought is said to be controlled by the neomammalian complex. The model thus suggest that these two (and three depending on the situation) structures are in a perpetual battle to control the body.
These interactions between the neocortex and the reptilian brain often seem competitive as the conscious thought generated by the neocortex can suppress the primitive thoughts generated by the reptilian complex. Thus, the model suggests that the interactions between structures are not constructive, but that they are conflicting due to the anatomical separation of the brain. [8]
This separation of structures proposed an underlying difference between consciousness and unconscious behaviour and argued that the reason why humans are such intelligent and conscious species is due to the not-so-common neocortex that they possess, unlike most other animals. [8] This detachment contributes to the idea that the three complexes interact with each other separately rather than a single construct interacting with itself.
MacLean originally formulated the triune brain hypothesis in the 1960s, drawing on comparative neuroanatomical work done by Ludwig Edinger, Elizabeth C. Crosby and Charles Judson Herrick early in the twentieth century. [9] [10] The 1980s saw a rebirth of interest in comparative neuroanatomy, motivated in part by the availability of a variety of new neuroanatomical techniques for charting the circuitry of animal brains. Subsequent findings according to human brain evolution expert Terrence Deacon, have refined the traditional neuroanatomical ideas upon which MacLean based his hypothesis. Deacon mentioned that 'the evolutionary addition of different parts of the brain is simply not realistic. However, all the parts of the brain were already existing, they were just further developed upon as the homosapien species evolved and gained life experiences.' [11]
For example, the basal ganglia (structures derived from the floor of the forebrain and making up MacLean's reptilian complex) were shown to take up a much smaller portion of the forebrains of reptiles and birds (together called sauropsids) than previously supposed, and to exist in amphibians and fish as well as mammals and sauropsids. Because the basal ganglia are found in the forebrains of all modern vertebrates, they most likely date to the common evolutionary ancestor of the vertebrates, more than 500 million years ago, rather than to the origin of reptiles.[ citation needed ]
Recent behavioral studies do not support the traditional view of sauropsid behavior as stereotyped and ritualistic (as in MacLean's reptilian complex). Birds have been shown to possess highly sophisticated cognitive abilities, such as the toolmaking of the New Caledonian crow and the language-like categorization abilities of the grey parrot. [12] Structures of the limbic system, which MacLean proposed arose in early mammals, have now been shown to exist across a range of modern vertebrates. The "paleomammalian" trait of parental care of offspring is widespread in birds and occurs in some fishes as well. Thus, like the basal ganglia, the evolution of these systems presumably dates to a common vertebrate ancestor. [10] [13]
Finally, recent studies based on paleontological data or comparative anatomical evidence strongly suggest that the neocortex was already present in the earliest emerging mammals. [10] In addition, although non-mammals do not have a neocortex in the true sense (that is, a structure comprising part of the forebrain roof, or pallium, consisting of six characteristic layers of neurons), they possess pallial regions, and some parts of the pallium are considered homologous to the mammalian neocortex. While these areas lack the characteristic six neocortical layers, birds and reptiles generally possess three layers in the dorsal pallium (the homolog of the mammalian neocortex). [10] [13] The telencephalon of birds and mammals makes neuroanatomical connections with other telecencephalic structures [10] like those made by neocortex. It mediates similar functions such as perception, learning and memory, decision making, motor control, conceptual thinking.
The triune model of the mammalian brain is seen as an oversimplified organizing theme in the field of comparative neuroscience. [15] It continues to hold public interest because of its simplicity. While inaccurate in many respects as an explanation for brain activity, structure and evolution, it remains a commonly used concept as the "neocortex" represents that cluster of brain structures involved in advanced cognition, including planning, modeling and simulation; the "limbic brain" refers to those brain structures, wherever located, associated with social and nurturing behaviors, mutual reciprocity, and other behaviors and affects that arose during the age of the mammals; and the "reptilian brain" refers to those brain structures related to territoriality, ritual behavior and other "reptile" behaviors.[ citation needed ]
Howard Bloom, in his 1995 book The Lucifer Principle , references the concept of the triune brain in his explanations of certain aspects of human behavior. Arthur Koestler made MacLean's concept of the triune brain the centerpiece of much of his later work, notably The Ghost in the Machine . English novelist Julian Barnes quotes MacLean on the triune brain in the foreword to his 1982 novel Before She Met Me. Peter A. Levine uses the triune brain concept in his book Waking the Tiger to explain his somatic experiencing approach to healing trauma.[ citation needed ] In the series of novels written by Lee Child featuring knight-errant figure Jack Reacher, Reacher often experiences messages from what he calls his "lizard brain" that alert him to potential danger. In Disco Elysium , the player character interfaces directly with his limbic system and "ancient reptilian brain" at various points throughout the game, alongside the players skill set acting as a representation of his posterior neocortex [16] .
Glynda-Lee Hoffmann, in her book The Secret Dowry of Eve, Women's Role in the Development of Consciousness, references the triune theory explored by MacLean and goes one step further. Her theory about human behavior, and the problems we create with that behavior, distinguishes the prefrontal cortex as uniquely different from the rest of the neocortex. The prefrontal cortex, with its agenda of integration, is the part of the brain that can get the other parts to work together for the good of the individual. Hoffmann claims that in many humans the reptilian cortex (agenda: territory and reproduction; in humans that translates to power and sex) is out of control, and the amygdala stokes the fear that leads to more bad behavior. [17]
The brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for special senses such as vision, hearing and olfaction. Being the most specialized organ, it is responsible for receiving information from the sensory nervous system, processing those information and the coordination of motor control.
The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all parts of the bodies of bilaterally symmetric and triploblastic animals—that is, all multicellular animals except sponges and diploblasts. It is a structure composed of nervous tissue positioned along the rostral to caudal axis of the body and may have an enlarged section at the rostral end which is a brain. Only arthropods, cephalopods and vertebrates have a true brain, though precursor structures exist in onychophorans, gastropods and lancelets.
The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. It is the largest site of neural integration in the central nervous system, and plays a key role in attention, perception, awareness, thought, memory, language, and consciousness. The cerebral cortex is the part of the brain responsible for cognition.
The limbic system, also known as the paleomammalian cortex, is a set of brain structures located on both sides of the thalamus, immediately beneath the medial temporal lobe of the cerebrum primarily in the forebrain.
Sauropsida is a clade of amniotes, broadly equivalent to the class Reptilia, though typically used in a broader sense to also include extinct stem-group relatives of modern reptiles and birds. The most popular definition states that Sauropsida is the sibling taxon to Synapsida, the other clade of amniotes which includes mammals as its only modern representatives. Although early synapsids have historically been referred to as "mammal-like reptiles", all synapsids are more closely related to mammals than to any modern reptile. Sauropsids, on the other hand, include all amniotes more closely related to modern reptiles than to mammals. This includes Aves (birds), which are recognized as a subgroup of archosaurian reptiles despite originally being named as a separate class in Linnaean taxonomy.
The cerebrum, telencephalon or endbrain is the largest part of the brain, containing the cerebral cortex as well as several subcortical structures, including the hippocampus, basal ganglia, and olfactory bulb. In the human brain, the cerebrum is the uppermost region of the central nervous system. The cerebrum develops prenatally from the forebrain (prosencephalon). In mammals, the dorsal telencephalon, or pallium, develops into the cerebral cortex, and the ventral telencephalon, or subpallium, becomes the basal ganglia. The cerebrum is also divided into approximately symmetric left and right cerebral hemispheres.
The neocortex, also called the neopallium, isocortex, or the six-layered cortex, is a set of layers of the mammalian cerebral cortex involved in higher-order brain functions such as sensory perception, cognition, generation of motor commands, spatial reasoning and language. The neocortex is further subdivided into the true isocortex and the proisocortex.
Encephalization quotient (EQ), encephalization level (EL), or just encephalization is a relative brain size measure that is defined as the ratio between observed and predicted brain mass for an animal of a given size, based on nonlinear regression on a range of reference species. It has been used as a proxy for intelligence and thus as a possible way of comparing the intelligence levels of different species. For this purpose, it is a more refined measurement than the raw brain-to-body mass ratio, as it takes into account allometric effects. Expressed as a formula, the relationship has been developed for mammals and may not yield relevant results when applied outside this group.
Paul Donald MacLean was an American physician and neuroscientist who made significant contributions in the fields of physiology, psychiatry, and brain research through his work at Yale Medical School and the National Institute of Mental Health. MacLean's evolutionary triune brain theory proposed that the human brain was in reality three brains in one: the reptilian complex, the limbic system, and the neocortex.
Evolutionary neuroscience is the scientific study of the evolution of nervous systems. Evolutionary neuroscientists investigate the evolution and natural history of nervous system structure, functions and emergent properties. The field draws on concepts and findings from both neuroscience and evolutionary biology. Historically, most empirical work has been in the area of comparative neuroanatomy, and modern studies often make use of phylogenetic comparative methods. Selective breeding and experimental evolution approaches are also being used more frequently.
The habenula is a small bilateral neuronal structure in the brain of vertebrates, that has also been called a microstructure since it is no bigger than a pea. The naming as little rein describes its elongated shape in the epithalamus, where it borders the third ventricle, and lies in front of the pineal gland.
Polyvagal theory (PVT) is a collection of proposed evolutionary, neuroscientific, and psychological constructs pertaining to the role of the vagus nerve in emotion regulation, social connection and fear response. The theory was introduced in 1994 by Stephen Porges. There is consensus among experts that the assumptions of the polyvagal theory are untenable. PVT is popular among some clinical practitioners and patients, but it is not endorsed by current social neuroscience.
The evolution of the brain refers to the progressive development and complexity of neural structures over millions of years, resulting in the diverse range of brain sizes and functions observed across different species today, particularly in vertebrates.
In neuroanatomy, pallium refers to the layers of grey and white matter that cover the upper surface of the cerebrum in vertebrates. The non-pallial part of the telencephalon builds the subpallium. In basal vertebrates, the pallium is a relatively simple three-layered structure, encompassing 3–4 histogenetically distinct domains, plus the olfactory bulb.
Leah Krubitzer is an American neuroscientist, Professor of Psychology at University of California, Davis, and head of the Laboratory of Evolutionary Neurobiology. Her research interests center on how complex brains in mammals evolve from simpler forms. To do this, she focuses on anatomical connections and electrophysiological characteristics of neurons in the neocortex. Using comparative studies, she determines which features of the neocortex are shared by all mammals and how new features of the neocortex have evolved. This allows her to reconstruct evolutionary phylogenies of the neocortex together with their relationship to functional changes. Thus, her work aims to explain the diversity in mammalian behavioral and perceptual abilities by investigating how evolutionarily old developmental mechanisms constrain evolutionary change while also providing the variation needed for the evolution of the diversity of brains found in mammals.
Triune mind, triune brain is a theoretical model developed by Canadian Buddhist scholar Suwanda H. J. Sugunasiri. It follows upon his clarification of the three terms used by the Buddha for consciousness, namely, Mano, Citta and Viññāṇa as can be seen in his work on the triune mind. Looking into the fields of Pali Buddhism, neuroscience, anthropology, linguistics, and embryology, among others, the overall thrust of this research moves toward a formalization and scientific refinement, done by assimilating functions of the mind as known in the Sutta and the Abhidamma with structures of the brain according to evolutionary biology.
The neomammalian brain is one of three aspects of Paul MacLean's triune theory of the human brain. MacLean was an American physician and neuroscientist who formulated his model in the 1960s, which was published in his own 1990 book The Triune Brain in Evolution. MacLean's three-part theory explores how the human brain has evolved from ancestors over millions of years, consisting of the reptilian, paleomammalian and neomammalian complexes. MacLean proposes that the neomammalian complex is only found in higher order mammals, for example, the human brain, accounting for increased cognitive ability such as motor control, memory, improved reasoning and complex decision-making.
The triune ethics theory (TET) is a metatheory in the field of moral psychology, proposed by Darcia Narvaez and inspired by Paul MacLean's triune brain model of brain development. TET highlights the relative contributions of biological inheritance, environmental influences on neurobiology, and culture to moral development and reasoning. TET proposes three ethics that are the foundation or motivation for all ethics: security, engagement, and imagination. They differ not only in the recency of evolutionary development but also in their relative capacity to override one another.
The avian brain is the central organ of the nervous system in birds. Birds possess large, complex brains, which process, integrate, and coordinate information received from the environment and make decisions on how to respond with the rest of the body. Like in all chordates, the avian brain is contained within the skull bones of the head.
Francisco Aboitiz is a Chilean neuroscientist, academic, and author. He is a professor at the Medical School and the Director of the Interdisciplinary Center for Neuroscience NeuroUC at Pontificia Universidad Católica (PUC) de Chile.