USP11

Last updated
USP11
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases USP11 , UHX1, ubiquitin specific peptidase 11
External IDs OMIM: 300050 MGI: 2384312 HomoloGene: 31252 GeneCards: USP11
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004651
NM_001371072

NM_145628
NM_001358931

RefSeq (protein)

NP_001358001

NP_663603
NP_001345860

Location (UCSC) Chr X: 47.23 – 47.25 Mb Chr X: 20.57 – 20.59 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Ubiquitin carboxyl-terminal hydrolase or Ubiquitin specific protease 11 is an enzyme that in humans is encoded by the USP11 gene. [5] [6] USP11 belongs to the Ubiquitin specific proteases family (USPs) which is a sub-family of the Deubiquitinating enzymes (DUBs).USPs are multiple domain proteases and belong to the C19 cysteine proteases sub‒family. Depending on their domain architecture and position there is different homology between the various members. Generally the largest domain is the catalytic domain which harbours the three residue catalytic triad that is included inside conserved motifs (Cys and His boxes). The catalytic domain also contains sequences that are not related with the catalysis function and their role is mostly not clearly understood at present, the length of these sequences varies for each USP and therefore the length of the whole catalytic domain can range from approximately 295 to 850 amino acids. [7] Particular sequences inside the catalytic domain or at the N‒terminus of some USPs have been characterised as UBL (Ubiquitin like) and DUSP (domain present in ubiquitin‒specific proteases) domains respectively. In some cases, regarding the UBL domains, it has been reported to have a catalysis enhancing function as in the case of USP7. [8] In addition, a so‒called DU domain module is the combination of a DUSP domain followed by a UBL domain separated by a linker and is found in USP11 as well as in USP15 and USP4.

Contents

USP11 is 963aa protein with a MW of approximately 109.8 kDa and a pI of ~5.28; it shares significant homology with USP15 and along with USP4 forms the DU subfamily. Nevertheless, alignment of the three USPs confirms that USP15 and USP4 are the closest homologues with the identity reaching ~73 % between their UBL1 domains whereas USP11 is the most distant member with an identity of only ~32.3 % when compared to USP15. An UBL2 domain insertion (285aa) is present within the catalytic domain, which encompasses amino acids 310‒931, and the catalytic triad consists of a cysteine, a histidine and an aspartic acid.

Function

Protein ubiquitination controls many intracellular processes, including cell cycle progression, transcriptional activation, and signal transduction. This dynamic process, involving ubiquitin conjugating enzymes and deubiquitinating enzymes, adds and removes ubiquitin. Deubiquitinating enzymes are cysteine proteases that specifically cleave ubiquitin from ubiquitin-conjugated protein substrates. This gene encodes a deubiquitinating enzyme which lies in a gene cluster on chromosome Xp11.23 [6]

Interactions

USP11 has been shown to interact with RANBP9. [9]

Related Research Articles

<span class="mw-page-title-main">Ubiquitin</span> Regulatory protein found in most eukaryotic tissues

Ubiquitin is a small regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ubiquitously. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Four genes in the human genome code for ubiquitin: UBB, UBC, UBA52 and RPS27A.

<span class="mw-page-title-main">Deubiquitinating enzyme</span>

Deubiquitinating enzymes (DUBs), also known as deubiquitinating peptidases, deubiquitinating isopeptidases, deubiquitinases, ubiquitin proteases, ubiquitin hydrolases, or ubiquitin isopeptidases, are a large group of proteases that cleave ubiquitin from proteins. Ubiquitin is attached to proteins in order to regulate the degradation of proteins via the proteasome and lysosome; coordinate the cellular localisation of proteins; activate and inactivate proteins; and modulate protein-protein interactions. DUBs can reverse these effects by cleaving the peptide or isopeptide bond between ubiquitin and its substrate protein. In humans there are nearly 100 DUB genes, which can be classified into two main classes: cysteine proteases and metalloproteases. The cysteine proteases comprise ubiquitin-specific proteases (USPs), ubiquitin C-terminal hydrolases (UCHs), Machado-Josephin domain proteases (MJDs) and ovarian tumour proteases (OTU). The metalloprotease group contains only the Jab1/Mov34/Mpr1 Pad1 N-terminal+ (MPN+) (JAMM) domain proteases.

<span class="mw-page-title-main">RANBP9</span> Protein-coding gene in the species Homo sapiens

Ran-binding protein 9 is a protein that in humans is encoded by the RANBP9 gene.

<span class="mw-page-title-main">USP7</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-specific-processing protease 7 (USP7), also known as ubiquitin carboxyl-terminal hydrolase 7 or herpesvirus-associated ubiquitin-specific protease (HAUSP), is an enzyme that in humans is encoded by the USP7 gene.

<span class="mw-page-title-main">USP5</span> Protein-coding gene in the species Homo sapiens

Ubiquitin specific peptidase 5 is an enzyme that in humans is encoded by the USP5 gene.

<span class="mw-page-title-main">USP8</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 8 is an enzyme that in humans is encoded by the USP8 gene.

<span class="mw-page-title-main">USP10</span> Protein-coding gene in the species Homo sapiens

Ubiquitin specific peptidase 10, also known as USP10, is an enzyme which in humans is encoded by the USP10 gene.

<span class="mw-page-title-main">USP4</span> Protein-coding gene in the species Homo sapiens

Ubiquitin specific protease 4 (USP4) is an enzyme that cleaves ubiquitin from a number of protein substrates. Prior to the standardization of nomenclature USP4 was known as UNP, and was one of the first deubiquitinating enzymes to be identified in mammals. In the mouse and human the USP4 protein is encoded by a gene containing 22 exons.

<span class="mw-page-title-main">USP18</span> Protein-coding gene in the species Homo sapiens

Ubiquitin specific peptidase 18 (USP18), also known as UBP43, is a type I interferon receptor repressor and an isopeptidase. In humans, it is encoded by the USP18 gene. USP18 is induced by the immune response to type I and III interferons, and serves as a negative regulator of type I interferon, but not type III interferon. Loss of USP18 results in increased responsiveness to type I interferons and life-threatening autoinflammatory disease in humans due to the negative regulatory function of USP18 in interferon signal transduction. Independent of this activity, USP18 is also a member of the deubiquitinating protease family of enzymes. It is known to remove ISG15 conjugates from a broad range of protein substrates, a process known as deISGylation.

<span class="mw-page-title-main">OTUB1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin thioesterase OTUB1 also known as otubain-1 is an enzyme that in humans is encoded by the OTUB1 gene. Alternative splicing results in multiple transcript variants.

<span class="mw-page-title-main">USP36</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-specific protease 36 is an enzyme that in humans is encoded by the USP36 gene.

<span class="mw-page-title-main">USP1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 1 is an enzyme that in humans is encoded by the USP1 gene.

<span class="mw-page-title-main">USP15</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 15 is an enzyme that in humans is encoded by the USP15 gene.

<span class="mw-page-title-main">RNF41</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase NRDP1 is an enzyme that in humans is encoded by the RNF41 gene.

<span class="mw-page-title-main">USP2</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 2 is an enzyme that in humans is encoded by the USP2 gene.

<span class="mw-page-title-main">USP20</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 20 is an enzyme that in humans is encoded by the USP20 gene.

<span class="mw-page-title-main">UFM1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-fold modifier 1, also known as UFM1, is a protein which in humans is encoded by the UFM1 gene.

<span class="mw-page-title-main">USP25</span> Protein-coding gene in the species Homo sapiens

Ubiquitin specific peptidase 25 is a protein that in humans is encoded by the USP25 gene.

<span class="mw-page-title-main">USP27X</span> Enzyme

The ubiquitin carboxyl-terminal hydrolase 27, also known as deubiquitinating enzyme 27, ubiquitin thioesterase 27 and USP27X, is a deubiquitinating enzyme which is mainly characterized for cleaving ubiquitin (Ub) from proteins and other molecules. Ubiquitin binds to proteins so as to regulate the degradation of them via the proteasome and lysosome among many other functions.

<span class="mw-page-title-main">Nidoviral papain-like protease</span> Papain-like protease protein domain

The nidoviral papain-like protease is a papain-like protease protein domain encoded in the genomes of nidoviruses. It is expressed as part of a large polyprotein from the ORF1a gene and has cysteine protease enzymatic activity responsible for proteolytic cleavage of some of the N-terminal viral nonstructural proteins within the polyprotein. A second protease also encoded by ORF1a, called the 3C-like protease or main protease, is responsible for the majority of further cleavages. Coronaviruses have one or two papain-like protease domains; in SARS-CoV and SARS-CoV-2, one PLPro domain is located in coronavirus nonstructural protein 3 (nsp3). Arteriviruses have two to three PLP domains. In addition to their protease activity, PLP domains function as deubiquitinating enzymes (DUBs) that can cleave the isopeptide bond found in ubiquitin chains. They are also "deISGylating" enzymes that remove the ubiquitin-like domain interferon-stimulated gene 15 (ISG15) from cellular proteins. These activities are likely responsible for antagonizing the activity of the host innate immune system. Because they are essential for viral replication, papain-like protease domains are considered drug targets for the development of antiviral drugs against human pathogens such as MERS-CoV, SARS-CoV, and SARS-CoV-2.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000102226 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000031066 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Puente XS, Sánchez LM, Overall CM, López-Otín C (July 2003). "Human and mouse proteases: a comparative genomic approach". Nature Reviews. Genetics. 4 (7): 544–58. doi:10.1038/nrg1111. PMID   12838346. S2CID   2856065.
  6. 1 2 "Entrez Gene: USP11 ubiquitin specific peptidase 11".
  7. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (December 2005). "A genomic and functional inventory of deubiquitinating enzymes". Cell. 123 (5): 773–86. doi:10.1016/j.cell.2005.11.007. hdl: 1874/20959 . PMID   16325574. S2CID   15575576.
  8. Faesen AC, Dirac AM, Shanmugham A, Ovaa H, Perrakis A, Sixma TK (October 2011). "Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase". Molecular Cell. 44 (1): 147–59. doi: 10.1016/j.molcel.2011.06.034 . hdl: 11858/00-001M-0000-002D-C745-C . PMID   21981925.
  9. Ideguchi H, Ueda A, Tanaka M, Yang J, Tsuji T, Ohno S, Hagiwara E, Aoki A, Ishigatsubo Y (October 2002). "Structural and functional characterization of the USP11 deubiquitinating enzyme, which interacts with the RanGTP-associated protein RanBPM". The Biochemical Journal. 367 (Pt 1): 87–95. doi:10.1042/BJ20011851. PMC   1222860 . PMID   12084015.

Further reading