Ubbelohde viscometer

Last updated
Ubbelohde viscometer. 1)Filling tube 2)Venting Tube 3)Capillary Tube 4)Feeder Bulb 5)Measuring Bulb 6)Capillary 7)Level Bulb 8)Reservoir A-B)Timing Marks C-D)Max/Min Marks Ubbelohde lepkosciomierz.PNG
Ubbelohde viscometer. 1)Filling tube 2)Venting Tube 3)Capillary Tube 4)Feeder Bulb 5)Measuring Bulb 6)Capillary 7)Level Bulb 8)Reservoir A-B)Timing Marks C-D)Max/Min Marks

An Ubbelohde type viscometer or suspended-level viscometer is a measuring instrument which uses a capillary based method of measuring viscosity. [2] [3] It is recommended for higher viscosity cellulosic polymer solutions. The advantage of this instrument is that the values obtained are independent of the total volume. The device was developed by the German chemist Leo Ubbelohde (1877-1964).

ASTM and other test methods are: ISO 3104, ISO 3105, ASTM D445, ASTM D446, ASTM D4020, IP 71, BS 188. [4] [ citation needed ]

The Ubbelohde viscometer is closely related to the Ostwald viscometer. Both are u-shaped pieces of glassware with a reservoir on one side and a measuring bulb with a capillary on the other. A liquid is introduced into the reservoir then sucked through the capillary and measuring bulb. The liquid is allowed to travel back through the measuring bulb and the time it takes for the liquid to pass through two calibrated marks is a measure for viscosity. The Ubbelohde device has a third arm extending from the end of the capillary and open to the atmosphere. In this way the pressure head only depends on a fixed height and no longer on the total volume of liquid.

Determination of viscosity

The determination of viscosity is based on Poiseuille's law:

where t is the time it takes for a volume V to elute. The ratio depends on R as the capillary radius, on the average applied pressure P, on its length L and on the dynamic viscosity η.

The average pressure head is given by:

with ρ the density of the liquid, g the Standard gravity and H the average head of the liquid. In this way the viscosity of a fluid can be determined.

Usually the viscosity of a liquid is compared to a liquid with an analyte for example a polymer dissolved in it. The relative viscosity is given by:

where t0 and ρ0 are the elution time and density of the pure liquid. When the solution is very diluted

the so-called specific viscosity becomes:

This specific viscosity is related to the concentration of the analyte through the Intrinsic viscosity [η] by the power series:

or

where is called the viscosity number.

The intrinsic viscosity can be determined experimentally by measuring the viscosity number as function of concentration as the Y-axis intercept.

Related Research Articles

A viscometer is an instrument used to measure the viscosity of a fluid. For liquids with viscosities which vary with flow conditions, an instrument called a rheometer is used. Thus, a rheometer can be considered as a special type of viscometer. Viscometers only measure under one flow condition.

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.

In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. It characterises the fluid's flow regime: a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow. Below a certain critical value, there is no fluid motion and heat transfer is by conduction rather than convection. For most engineering purposes, the Rayleigh number is large, somewhere around 106 to 108.

<span class="mw-page-title-main">Jean Léonard Marie Poiseuille</span>

Jean Léonard Marie Poiseuille was a French physicist and physiologist.

<span class="mw-page-title-main">Foam</span> Form of matter

Foams are materials formed by trapping pockets of gas in a liquid or solid.

Hemorheology, also spelled haemorheology, or blood rheology, is the study of flow properties of blood and its elements of plasma and cells. Proper tissue perfusion can occur only when blood's rheological properties are within certain levels. Alterations of these properties play significant roles in disease processes. Blood viscosity is determined by plasma viscosity, hematocrit and mechanical properties of red blood cells. Red blood cells have unique mechanical behavior, which can be discussed under the terms erythrocyte deformability and erythrocyte aggregation. Because of that, blood behaves as a non-Newtonian fluid. As such, the viscosity of blood varies with shear rate. Blood becomes less viscous at high shear rates like those experienced with increased flow such as during exercise or in peak-systole. Therefore, blood is a shear-thinning fluid. Contrarily, blood viscosity increases when shear rate goes down with increased vessel diameters or with low flow, such as downstream from an obstruction or in diastole. Blood viscosity also increases with increases in red cell aggregability.

Permeability in fluid mechanics and the Earth sciences is a measure of the ability of a porous material to allow fluids to pass through it.

A quartz crystal microbalance (QCM) measures a mass variation per unit area by measuring the change in frequency of a quartz crystal resonator. The resonance is disturbed by the addition or removal of a small mass due to oxide growth/decay or film deposition at the surface of the acoustic resonator. The QCM can be used under vacuum, in gas phase and more recently in liquid environments. It is useful for monitoring the rate of deposition in thin film deposition systems under vacuum. In liquid, it is highly effective at determining the affinity of molecules to surfaces functionalized with recognition sites. Larger entities such as viruses or polymers are investigated as well. QCM has also been used to investigate interactions between biomolecules. Frequency measurements are easily made to high precision ; hence, it is easy to measure mass densities down to a level of below 1 μg/cm2. In addition to measuring the frequency, the dissipation factor is often measured to help analysis. The dissipation factor is the inverse quality factor of the resonance, Q−1 = w/fr ; it quantifies the damping in the system and is related to the sample's viscoelastic properties.

In physics, Washburn's equation describes capillary flow in a bundle of parallel cylindrical tubes; it is extended with some issues also to imbibition into porous materials. The equation is named after Edward Wight Washburn; also known as Lucas–Washburn equation, considering that Richard Lucas wrote a similar paper three years earlier, or the Bell-Cameron-Lucas-Washburn equation, considering J.M. Bell and F.K. Cameron's discovery of the form of the equation in 1906.

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group.

The Sauerbrey equation was developed by the German Günter Sauerbrey in 1959, while working on his doctoral thesis at the Technical University of Berlin, Germany. It is a method for correlating changes in the oscillation frequency of a piezoelectric crystal with the mass deposited on it. He simultaneously developed a method for measuring the characteristic frequency and its changes by using the crystal as the frequency determining component of an oscillator circuit. His method continues to be used as the primary tool in quartz crystal microbalance (QCM) experiments for conversion of frequency to mass and is valid in nearly all applications.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

In respiratory physiology, airway resistance is the resistance of the respiratory tract to airflow during inhalation and exhalation. Airway resistance can be measured using plethysmography.

The air permeability specific surface of a powder material is a single-parameter measurement of the fineness of the powder. The specific surface is derived from the resistance to flow of air through a porous bed of the powder. The SI units are m2·kg−1 or m2·m−3.

Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. Acoustic streaming was explained first by Lord Rayleigh in 1884. It is the less-known opposite of sound generation by a flow.

<span class="mw-page-title-main">Coulomb wave function</span>

In mathematics, a Coulomb wave function is a solution of the Coulomb wave equation, named after Charles-Augustin de Coulomb. They are used to describe the behavior of charged particles in a Coulomb potential and can be written in terms of confluent hypergeometric functions or Whittaker functions of imaginary argument.

<span class="mw-page-title-main">Falkner–Skan boundary layer</span> Boundary Layer

In fluid dynamics, the Falkner–Skan boundary layer describes the steady two-dimensional laminar boundary layer that forms on a wedge, i.e. flows in which the plate is not parallel to the flow. It is also representative of flow on a flat plate with an imposed pressure gradient along the plate length, a situation often encountered in wind tunnel flow. It is a generalization of the flat plate Blasius boundary layer in which the pressure gradient along the plate is zero.

<span class="mw-page-title-main">Visco-elastic jets</span>

Visco-elastic jets are the jets of viscoelastic fluids, i.e. fluids that disobey Newton's law of Viscocity. A Viscoelastic fluid that returns to its original shape after the applied stress is released.

In the theory of capillarity, Bosanquet equation is an improved modification of the simpler Lucas–Washburn theory for the motion of a liquid in a thin capillary tube or a porous material that can be approximated as a large collection of capillaries. In the Lucas–Washburn model, the inertia of the fluid is ignored, leading to the assumption that flow is continuous under constant viscous laminar Poiseuille flow conditions without considering effects of mass transport undergoing acceleration occurring at the start of flow and at points of changing internal capillary geometry. The Bosanquet equation is a differential equation that is second-order in the time derivative, similar to Newton's Second Law, and therefore takes into account the fluid inertia. Equations of motion, like the Washburn's equation, that attempt to explain a velocity as proportional to a driving force are often described with the term Aristotelian mechanics.

The shear viscosity of a fluid is a material property that describes the friction between internal neighboring fluid surfaces flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move between these fluid sheets due to fluctuations in their motion. The viscosity is not a material constant, but a material property that depends on temperature, pressure, fluid mixture composition, local velocity variations. This functional relationship is described by a mathematical viscosity model called a constitutive equation which is usually far more complex than the defining equation of shear viscosity. One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules. When scientists and engineers use new arguments or theories to develop a new viscosity model, instead of improving the reigning model, it may lead to the first model in a new class of models. This article will display one or two representative models for different classes of viscosity models, and these classes are:

References

  1. "Visco Handbook: Application of Viscometery using Glass Capillary Viscometers". ChemEurope.
  2. Introduction to Polymers R.J. Young ISBN   0-412-22170-5
  3. "Ubbelohde's viscometer".
  4. ASTM Ubbelohde Viscometer