Ungula

Last updated

In solid geometry, an ungula is a region of a solid of revolution, cut off by a plane oblique to its base. [1] A common instance is the spherical wedge. The term ungula refers to the hoof of a horse, an anatomical feature that defines a class of mammals called ungulates.

Contents

The volume of an ungula of a cylinder was calculated by Grégoire de Saint Vincent. [2] Two cylinders with equal radii and perpendicular axes intersect in four double ungulae. [3] The bicylinder formed by the intersection had been measured by Archimedes in The Method of Mechanical Theorems, but the manuscript was lost until 1906.

A historian of calculus described the role of the ungula in integral calculus:

Grégoire himself was primarily concerned to illustrate by reference to the ungula that volumetric integration could be reduced, through the ductus in planum, to a consideration of geometric relations between the lies of plane figures. The ungula, however, proved a valuable source of inspiration for those who followed him, and who saw in it a means of representing and transforming integrals in many ingenious ways. [4] :146

Cylindrical ungula

Ungula of a right circular cylinder. Cylindrical ungula.png
Ungula of a right circular cylinder.

A cylindrical ungula of base radius r and height h has volume

,. [5]

Its total surface area is

,

the surface area of its curved sidewall is

,

and the surface area of its top (slanted roof) is

.

Proof

Consider a cylinder bounded below by plane and above by plane where k is the slope of the slanted roof:

.

Cutting up the volume into slices parallel to the y-axis, then a differential slice, shaped like a triangular prism, has volume

where

is the area of a right triangle whose vertices are, , , and , and whose base and height are thereby and , respectively. Then the volume of the whole cylindrical ungula is

which equals

after substituting .

A differential surface area of the curved side wall is

,

which area belongs to a nearly flat rectangle bounded by vertices , , , and , and whose width and height are thereby and (close enough to) , respectively. Then the surface area of the wall is

where the integral yields , so that the area of the wall is

,

and substituting yields

.

The base of the cylindrical ungula has the surface area of half a circle of radius r: , and the slanted top of the said ungula is a half-ellipse with semi-minor axis of length r and semi-major axis of length , so that its area is

and substituting yields

. ∎

Note how the surface area of the side wall is related to the volume: such surface area being , multiplying it by gives the volume of a differential half-shell, whose integral is , the volume.

When the slope k equals 1 then such ungula is precisely one eighth of a bicylinder, whose volume is . One eighth of this is .

Conical ungula

Ungula of a right circular cone. Conical ungula.png
Ungula of a right circular cone.

A conical ungula of height h, base radius r, and upper flat surface slope k (if the semicircular base is at the bottom, on the plane z = 0) has volume

where

is the height of the cone from which the ungula has been cut out, and

.

The surface area of the curved sidewall is

.

As a consistency check, consider what happens when the height of the cone goes to infinity, so that the cone becomes a cylinder in the limit:

so that

,
, and
,

which results agree with the cylindrical case.

Proof

Let a cone be described by

where r and H are constants and z and ρ are variables, with

and

.

Let the cone be cut by a plane

.

Substituting this z into the cone's equation, and solving for ρ yields

which for a given value of θ is the radial coordinate of the point common to both the plane and the cone that is farthest from the cone's axis along an angle θ from the x-axis. The cylindrical height coordinate of this point is

.

So along the direction of angle θ, a cross-section of the conical ungula looks like the triangle

.

Rotating this triangle by an angle about the z-axis yields another triangle with , , substituted for , , and respectively, where and are functions of instead of . Since is infinitesimal then and also vary infinitesimally from and , so for purposes of considering the volume of the differential trapezoidal pyramid, they may be considered equal.

The differential trapezoidal pyramid has a trapezoidal base with a length at the base (of the cone) of , a length at the top of , and altitude , so the trapezoid has area

.

An altitude from the trapezoidal base to the point has length differentially close to

.

(This is an altitude of one of the side triangles of the trapezoidal pyramid.) The volume of the pyramid is one-third its base area times its altitudinal length, so the volume of the conical ungula is the integral of that:

where

Substituting the right hand side into the integral and doing some algebraic manipulation yields the formula for volume to be proven.

For the sidewall:

and the integral on the rightmost-hand-side simplifies to . ∎

As a consistency check, consider what happens when k goes to infinity; then the conical ungula should become a semi-cone.

which is half of the volume of a cone.

which is half of the surface area of the curved wall of a cone.

Surface area of top part

When , the "top part" (i.e., the flat face that is not semicircular like the base) has a parabolic shape and its surface area is

.

When then the top part has an elliptic shape (i.e., it is less than one-half of an ellipse) and its surface area is

where

,
,
,
, and
.

When then the top part is a section of a hyperbola and its surface area is

where

,
is as above,
,
,
,
,

where the logarithm is natural, and

.

See also

Related Research Articles

Spherical coordinate system 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the radial distance of that point from a fixed origin, its polar angle measured from a fixed zenith direction, and the azimuthal angle of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the zenith, measured from a fixed reference direction on that plane. It can be seen as the three-dimensional version of the polar coordinate system.

Laplaces equation Second order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

Navier–Stokes equations Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are certain partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

Ellipsoid Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

Spherical harmonics Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

Solid of revolution 3D shape obtained by rotating a plane curve about an arbitrary axis within the plane

In geometry, a solid of revolution is a solid figure obtained by rotating a plane curve around some straight line that lies on the same plane. The surface created by this revolution and which bounds the solid is the surface of revolution.

Inverse trigonometric functions Arcsin, arccos, arctan, etc

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

Vector fields in cylindrical and spherical coordinates Vector field representation in 3D curvilinear coordinate systems

Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken in comparing different sources.

In mathematics, the Hankel transform expresses any given function f(r) as the weighted sum of an infinite number of Bessel functions of the first kind Jν(kr). The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor k along the r axis. The necessary coefficient Fν of each Bessel function in the sum, as a function of the scaling factor k constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval.

Area of a circle

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

Multiple integral Generalization of definite integrals to functions of multiple variables

In mathematics, a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in are called double integrals, and integrals of a function of three variables over a region in are called triple integrals. For multiple integrals of a single-variable function, see the Cauchy formula for repeated integration.

The method of image charges is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with imaginary charges, which replicates the boundary conditions of the problem.

Spherical multipole moments are the coefficients in a series expansion of a potential that varies inversely with the distance R to a source, i.e., as 1/R. Examples of such potentials are the electric potential, the magnetic potential and the gravitational potential.

Differentiation of trigonometric functions Mathematical process of finding the derivative of a trigonometric function

The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin′(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

References

  1. Ungula at Webster Dictionary.org
  2. Gregory of St. Vincent (1647) Opus Geometricum quadraturae circuli et sectionum coni
  3. Blaise Pascal Lettre de Dettonville a Carcavi describes the onglet and double onglet, link from HathiTrust
  4. Margaret E. Baron (1969) The Origins of the Infinitesimal Calculus, Pergamon Press, republished 2014 by Elsevier, Google Books preview
  5. Solids - Volumes and Surfaces at The Engineering Toolbox