VAC14

Last updated
VAC14
Identifiers
Aliases VAC14 , ArPIKfyve, TAX1BP2, TRX, Vac14, PIKFYVE complex component, VAC14 component of PIKFYVE complex
External IDs OMIM: 604632 MGI: 2157980 HomoloGene: 6528 GeneCards: VAC14
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_018052
NM_001351157

NM_146216

RefSeq (protein)

NP_060522
NP_001338086

NP_666328

Location (UCSC) Chr 16: 70.69 – 70.8 Mb Chr 8: 111.35 – 111.45 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Protein VAC14 homolog, also known as ArPIKfyve (Associated Regulator of PIKfyve), is a protein that in humans is encoded by the VAC14 gene. [5] [6] [7]

Contents

Function

The content of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) in endosomal membranes changes dynamically with fission and fusion events that generate or absorb intracellular transport vesicles. The ArPIKfyve protein scaffolds a trimolecular complex to tightly regulate the level of PtdIns(3,5)P2. Other components of this complex are the PtdIns(3,5)P2-synthesizing enzyme PIKFYVE and the Sac1-domain-containing PtdIns(3,5)P2 5-phosphatase Sac3, encoded by the human gene FIG4. VAC14 functions as an activator of PIKFYVE. [5] [8] Studies in VAC14 knockout mice indicate that, in addition to increasing the PtdIns(3,5)P2-producing activity of PIKfyve, VAC14 also controls the steady-state levels of another rare phosphoinositide linked to PIKfyve enzyme activity – phosphatidylinositol 5-phosphate. It is seen that VAC14 is scaffold protein that acts in complex with the lipid kinase PIKfyve which works to phosphorylate phosphatidylinositol-3-phosphate, as well as the counteracting phosphatase FIG4, which removes a phosphate group. [9]

In addition to the formation of the ternary complex with PIKfyve and Sac3, ArPIKfyve is engaged in a number of other interactions. ArPIKfyve forms a stable complex with the PtdIns(3,5)P2-specific phosphatase Sac3, thereby protecting Sac3 from rapid degradation in the proteasome. [10] ArPIKfyve forms a homooligomer through its carboxyl terminus. However, the number of monomers in the ArPIKfyve homooligomer, ArPIKfyve-Sac3 heterodimer or PIKfyve-ArPIKfyve-Sac3 heterotrimer is unknown. [11] Human Vac14/ArPIKfyve also interacts with the PDZ (post-synaptic density) domain of neuronal nitric oxide synthase [12] but the functional significance of this interaction is still unclear. ArPIKfyve facilitates insulin-regulated GLUT4 translocation to the cell surface. [13]

Mouse models

VAC14 knock-out mice die at, or shortly after birth and exhibit massive neurodegeneration. Fibroblasts from these mice display ~50% lower levels of PtdIns(3,5)P2 and PtdIns(5)P. [14] A spontaneous mouse VAC14-point mutation (with arginine substitution of leucine156) is associated with reduced life span (up to 3 weeks), body size, enlarged brain ventricles, 50% decrease in PtdIns(3,5)P2 levels, diluted pigmentation, tremor and impaired motor function. [15]

Clinical significance

The VAC14 gene has been linked to human disease. [16] It is thought that the PIKfyve-VAC14-FIG4 complex plays an important role on the maturation of early endosomes to late endosomes/lysosomes. These organelles play critical roles in vesicular trafficking, which move cargo from donor membrane cells to target membranes within the body. [17]

Related Research Articles

<span class="mw-page-title-main">Phosphatidylinositol (3,4,5)-trisphosphate</span> Chemical compound

Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), abbreviated PIP3, is the product of the class I phosphoinositide 3-kinases' (PI 3-kinases) phosphorylation of phosphatidylinositol (4,5)-bisphosphate (PIP2). It is a phospholipid that resides on the plasma membrane.

<span class="mw-page-title-main">Phosphoinositide 3-kinase</span> Class of enzymes

Phosphoinositide 3-kinases (PI3Ks), also called phosphatidylinositol 3-kinases, are a family of enzymes involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking, which in turn are involved in cancer.

<span class="mw-page-title-main">Phosphatidylinositol 4,5-bisphosphate</span> Chemical compound

Phosphatidylinositol 4,5-bisphosphate or PtdIns(4,5)P2, also known simply as PIP2 or PI(4,5)P2, is a minor phospholipid component of cell membranes. PtdIns(4,5)P2 is enriched at the plasma membrane where it is a substrate for a number of important signaling proteins. PIP2 also forms lipid clusters that sort proteins.

<span class="mw-page-title-main">Phosphatidylinositol 3-phosphate</span> Chemical compound

Phosphatidylinositol 3-phosphate (PtdIns3P) is a phospholipid found in cell membranes that helps to recruit a range of proteins, many of which are involved in protein trafficking, to the membranes. It is the product of both the class II and III phosphoinositide 3-kinases activity on phosphatidylinositol.

<span class="mw-page-title-main">Phosphatidylinositol 3,4-bisphosphate</span>

Phosphatidylinositol (3,4)-bisphosphate is a minor phospholipid component of cell membranes, yet an important second messenger. The generation of PtdIns(3,4)P2 at the plasma membrane activates a number of important cell signaling pathways.

<span class="mw-page-title-main">Phosphatidylinositol 3,5-bisphosphate</span> Chemical compound

Phosphatidylinositol 3,5-bisphosphate is one of the seven phosphoinositides found in eukaryotic cell membranes. In quiescent cells, the PtdIns(3,5)P2 levels, typically quantified by HPLC, are the lowest amongst the constitutively present phosphoinositides. They are approximately 3 to 5-fold lower as compared to PtdIns3P and PtdIns5P levels, and more than 100-fold lower than the abundant PtdIns4P and PtdIns(4,5)P2. PtdIns(3,5)P2 was first reported to occur in mouse fibroblasts and budding yeast S. cerevisiae in 1997. In S. cerevisiae PtdIns(3,5)P2 levels increase dramatically during hyperosmotic shock. The response to hyperosmotic challenge is not conserved in most tested mammalian cells except for differentiated 3T3L1 adipocytes.

<span class="mw-page-title-main">PX domain</span>

The PX domain is a phosphoinositide-binding structural domain involved in targeting of proteins to cell membranes.

<span class="mw-page-title-main">Yunis–Varon syndrome</span> Medical condition

Yunis–Varon syndrome (YVS), also called cleidocranial dysplasia with micrognathia or absent thumbs and distal aphalangia, is an extremely rare autosomal recessive multisystem congenital disorder which affects the skeletal system, ectodermal tissue, heart and respiratory system. It was first described by Emilio Yunis and Humberto Váron from the National University of Colombia.

<span class="mw-page-title-main">PLCE1</span> Protein-coding gene in the species Homo sapiens

Phospholipase C epsilon 1 (PLCE1) is an enzyme that in humans is encoded by the PLCE1 gene. This gene encodes a phospholipase enzyme (PLCE1) that catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate to generate two second messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). Mutations in this gene cause early-onset nephrotic syndrome and have been associated with respiratory chain deficiency with diffuse mesangial sclerosis.

<span class="mw-page-title-main">PIKFYVE</span> Protein-coding gene in the species Homo sapiens

PIKfyve, a FYVE finger-containing phosphoinositide kinase, is an enzyme that in humans is encoded by the PIKFYVE gene.

<span class="mw-page-title-main">PIP5K1A</span> Protein-coding gene in the species Homo sapiens

Phosphatidylinositol-4-phosphate 5-kinase type-1 alpha is an enzyme that in humans is encoded by the PIP5K1A gene.

<span class="mw-page-title-main">MTMR2</span> Protein-coding gene in the species Homo sapiens

Myotubularin-related protein 2 also known as phosphatidylinositol-3,5-bisphosphate 3-phosphatase or phosphatidylinositol-3-phosphate phosphatase is a protein that in humans is encoded by the MTMR2 gene.

<span class="mw-page-title-main">PLEKHA1</span> Protein-coding gene in the species Homo sapiens

Pleckstrin homology domain-containing family A member 1 is a protein that in humans is encoded by the PLEKHA1 gene.

<span class="mw-page-title-main">MTMR14</span> Protein-coding gene in the species Homo sapiens

Myotubularin related protein 14 also known as MTMR14 is a protein which in humans is encoded by the MTMR14 gene.

Phosphatidylinositol 5-phosphate (PtdIns5P) is a phosphoinositide, one of the phosphorylated derivatives of phosphatidylinositol (PtdIns), that are well-established membrane-anchored regulatory molecules. Phosphoinositides participate in signaling events that control cytoskeletal dynamics, intracellular membrane trafficking, cell proliferation and many other cellular functions. Generally, phosphoinositides transduce signals by recruiting specific phosphoinositide-binding proteins to intracellular membranes.

<span class="mw-page-title-main">Fig4</span> Protein-coding gene in the species Homo sapiens

Polyphosphoinositide phosphatase also known as phosphatidylinositol 3,5-bisphosphate 5-phosphatase or SAC domain-containing protein 3 (Sac3) is an enzyme that in humans is encoded by the FIG4 gene. Fig4 is an abbreviation for Factor-Induced Gene.

Vacuolar segregation protein 7 is a protein that in yeast is encoded by the VAC7 gene. VAC7 is a component of the PI(3,5)P2 regulatory complex, composed of ATG18, FIG4, FAB1, VAC14 and VAC7.

Phosphatidylinositol-4,5-bisphosphate 4-phosphatase (EC 3.1.3.78, phosphatidylinositol-4,5-bisphosphate 4-phosphatase I, phosphatidylinositol-4,5-bisphosphate 4-phosphatase II, type I PtdIns-4,5-P2 4-Ptase, type II PtdIns-4,5-P2 4-Ptase, IpgD, PtdIns-4,5-P2 4-phosphatase type I, PtdIns-4,5-P2 4-phosphatase type II, type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase, type 1 4-phosphatase) is an enzyme with systematic name 1-phosphatidyl-1D-myo-inositol-4,5-bisphosphate 4-phosphohydrolase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">INPP5F</span> Protein-coding gene in the species Homo sapiens

Inositol polyphosphate-5-phosphatase F is a protein that in humans is encoded by the INPP5F gene.

<span class="mw-page-title-main">Apilimod</span> Chemical compound

Apilimod (STA-5326) is a drug that was initially identified as an inhibitor of production of the interleukins IL-12 and IL-23, and developed for the oral treatment of autoimmune conditions such as Crohn's disease and rheumatoid arthritis, though clinical trial results were disappointing and development for these applications was not continued.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000103043 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000010936 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: Vac14 homolog (S. cerevisiae)".
  6. Davy BE, Robinson ML (May 2003). "Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene". Human Molecular Genetics. 12 (10): 1163–1170. doi: 10.1093/hmg/ddg122 . PMID   12719380.
  7. Sbrissa D, Ikonomov OC, Strakova J, Dondapati R, Mlak K, Deeb R, et al. (December 2004). "A mammalian ortholog of Saccharomyces cerevisiae Vac14 that associates with and up-regulates PIKfyve phosphoinositide 5-kinase activity". Molecular and Cellular Biology. 24 (23): 10437–10447. doi:10.1128/MCB.24.23.10437-10447.2004. PMC   529046 . PMID   15542851.
  8. Sbrissa D, Ikonomov OC, Fu Z, Ijuin T, Gruenberg J, Takenawa T, Shisheva A (August 2007). "Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex". The Journal of Biological Chemistry. 282 (33): 23878–23891. doi: 10.1074/jbc.M611678200 . PMID   17556371.
  9. Schulze U, Vollenbröker B, Braun DA, Van Le T, Granado D, Kremerskothen J, et al. (June 2014). "The Vac14-interaction network is linked to regulators of the endolysosomal and autophagic pathway". Molecular & Cellular Proteomics. 13 (6): 1397–1411. doi: 10.1074/mcp.M113.034108 . PMC   4047462 . PMID   24578385.
  10. Ikonomov OC, Sbrissa D, Fligger J, Delvecchio K, Shisheva A (August 2010). "ArPIKfyve regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot-Marie-Tooth 4J disorder". The Journal of Biological Chemistry. 285 (35): 26760–26764. doi: 10.1074/jbc.C110.154658 . PMC   2930674 . PMID   20630877.
  11. Sbrissa D, Ikonomov OC, Fenner H, Shisheva A (December 2008). "ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality". Journal of Molecular Biology. 384 (4): 766–779. doi:10.1016/j.jmb.2008.10.009. PMC   2756758 . PMID   18950639.
  12. Lemaire JF, McPherson PS (December 2006). "Binding of Vac14 to neuronal nitric oxide synthase: Characterisation of a new internal PDZ-recognition motif". FEBS Letters. 580 (30): 6948–6954. doi:10.1016/j.febslet.2006.11.061. PMID   17161399. S2CID   40346432.
  13. Ikonomov OC, Sbrissa D, Dondapati R, Shisheva A (July 2007). "ArPIKfyve-PIKfyve interaction and role in insulin-regulated GLUT4 translocation and glucose transport in 3T3-L1 adipocytes". Experimental Cell Research. 313 (11): 2404–2416. doi:10.1016/j.yexcr.2007.03.024. PMC   2475679 . PMID   17475247.
  14. Zhang Y, Zolov SN, Chow CY, Slutsky SG, Richardson SC, Piper RC, et al. (October 2007). "Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice". Proceedings of the National Academy of Sciences of the United States of America. 104 (44): 17518–17523. Bibcode:2007PNAS..10417518Z. doi: 10.1073/pnas.0702275104 . PMC   2077288 . PMID   17956977.
  15. Jin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M, et al. (December 2008). "VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse". The EMBO Journal. 27 (24): 3221–3234. doi:10.1038/emboj.2008.248. PMC   2600653 . PMID   19037259.
  16. Lenk GM, Szymanska K, Debska-Vielhaber G, Rydzanicz M, Walczak A, Bekiesinska-Figatowska M, et al. (July 2016). "Biallelic Mutations of VAC14 in Pediatric-Onset Neurological Disease". American Journal of Human Genetics. 99 (1): 188–194. doi:10.1016/j.ajhg.2016.05.008. PMC   5005439 . PMID   27292112.
  17. Qiu S, Lavallée-Adam M, Côté M (November 2021). "Proximity Interactome Map of the Vac14-Fig4 Complex Using BioID". Journal of Proteome Research. 20 (11): 4959–4973. doi: 10.1021/acs.jproteome.1c00408 . PMID   34554760. S2CID   237615479.

Further reading