Vandermonde's identity

Last updated

In combinatorics, Vandermonde's identity (or Vandermonde's convolution) is the following identity for binomial coefficients:

Contents

for any nonnegative integers r, m, n. The identity is named after Alexandre-Théophile Vandermonde (1772), although it was already known in 1303 by the Chinese mathematician Zhu Shijie. [1]

There is a q-analog to this theorem called the q-Vandermonde identity.

Vandermonde's identity can be generalized in numerous ways, including to the identity

Proofs

Algebraic proof

In general, the product of two polynomials with degrees m and n, respectively, is given by

where we use the convention that ai = 0 for all integers i > m and bj = 0 for all integers j > n. By the binomial theorem,

Using the binomial theorem also for the exponents m and n, and then the above formula for the product of polynomials, we obtain

where the above convention for the coefficients of the polynomials agrees with the definition of the binomial coefficients, because both give zero for all i > m and j > n, respectively.

By comparing coefficients of xr, Vandermonde's identity follows for all integers r with 0  r  m+n. For larger integers r, both sides of Vandermonde's identity are zero due to the definition of binomial coefficients.

Combinatorial proof

Vandermonde's identity also admits a combinatorial double counting proof, as follows. Suppose a committee consists of m men and n women. In how many ways can a subcommittee of r members be formed? The answer is

The answer is also the sum over all possible values of k, of the number of subcommittees consisting of k men and rk women:

Geometrical proof

Take a rectangular grid of r x (m+nr) squares. There are

paths that start on the bottom left vertex and, moving only upwards or rightwards, end at the top right vertex (this is because r right moves and m+n-r up moves must be made (or vice versa) in any order, and the total path length is m+n). Call the bottom left vertex (0, 0).

There are paths starting at (0, 0) that end at (k, mk), as k right moves and mk upward moves must be made (and the path length is m). Similarly, there are paths starting at (k, mk) that end at (r, m+nr), as a total of rk right moves and (m+nr) − (mk) upward moves must be made and the path length must be rk + (m+nr) − (mk) = n. Thus there are

paths that start at (0, 0), end at (r, m+nr), and go through (k, mk). This is a subset of all paths that start at (0, 0) and end at (r, m+nr), so sum from k = 0 to k = r (as the point (k, mk) is confined to be within the square) to obtain the total number of paths that start at (0, 0) and end at (r, m+nr).

Generalizations

Generalized Vandermonde's identity

One can generalize Vandermonde's identity as follows:

This identity can be obtained through the algebraic derivation above when more than two polynomials are used, or through a simple double counting argument.

On the one hand, one chooses elements out of a first set of elements; then out of another set, and so on, through such sets, until a total of elements have been chosen from the sets. One therefore chooses elements out of in the left-hand side, which is also exactly what is done in the right-hand side.

ChuVandermonde identity

The identity generalizes to non-integer arguments. In this case, it is known as the ChuVandermonde identity (see Askey 1975, pp. 5960) and takes the form

for general complex-valued s and t and any non-negative integer n. It can be proved along the lines of the algebraic proof above by multiplying the binomial series for and and comparing terms with the binomial series for .

This identity may be rewritten in terms of the falling Pochhammer symbols as

in which form it is clearly recognizable as an umbral variant of the binomial theorem (for more on umbral variants of the binomial theorem, see binomial type). The ChuVandermonde identity can also be seen to be a special case of Gauss's hypergeometric theorem, which states that

where is the hypergeometric function and is the gamma function. One regains the ChuVandermonde identity by taking a = n and applying the identity

liberally.

The Rothe–Hagen identity is a further generalization of this identity.

The hypergeometric probability distribution

When both sides have been divided by the expression on the left, so that the sum is 1, then the terms of the sum may be interpreted as probabilities. The resulting probability distribution is the hypergeometric distribution. That is the probability distribution of the number of red marbles in r draws without replacement from an urn containing n red and m blue marbles.

See also

Related Research Articles

<span class="mw-page-title-main">Binomial coefficient</span> Number of subsets of a given size

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula

In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial (x + y)n into a sum involving terms of the form axbyc, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b. For example, for n = 4,

In mathematics, the Bernoulli numbersBn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Negative binomial distribution</span> Probability distribution

In probability theory and statistics, the negative binomial distribution is a discrete probability distribution that models the number of failures in a sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of successes occurs. For example, we can define rolling a 6 on a dice as a success, and rolling any other number as a failure, and ask how many failure rolls will occur before we see the third success. In such a case, the probability distribution of the number of failures that appear will be a negative binomial distribution.

In mathematics, Stirling numbers arise in a variety of analytic and combinatorial problems. They are named after James Stirling, who introduced them in a purely algebraic setting in his book Methodus differentialis (1730). They were rediscovered and given a combinatorial meaning by Masanobu Saka in 1782.

<span class="mw-page-title-main">Lagrange polynomial</span> Polynomials used for interpolation

In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of data.

In mathematics, the falling factorial is defined as the polynomial

In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

The Touchard polynomials, studied by Jacques Touchard, also called the exponential polynomials or Bell polynomials, comprise a polynomial sequence of binomial type defined by

<span class="mw-page-title-main">Double factorial</span> Mathematical function

In mathematics, the double factorial of a number n, denoted by n, is the product of all the positive integers up to n that have the same parity as n. That is,

In mathematics, the binomial series is a generalization of the polynomial that comes from a binomial formula expression like for a nonnegative integer . Specifically, the binomial series is the MacLaurin series for the function , where and . Explicitly,

<span class="mw-page-title-main">Laguerre polynomials</span> Sequence of differential equation solutions

In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are nontrivial solutions of Laguerre's differential equation:

In mathematics, the Gaussian binomial coefficients are q-analogs of the binomial coefficients. The Gaussian binomial coefficient, written as or , is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian .

<span class="mw-page-title-main">Stieltjes constants</span>

In mathematics, the Stieltjes constants are the numbers that occur in the Laurent series expansion of the Riemann zeta function:

<span class="mw-page-title-main">Central binomial coefficient</span> Sequence of numbers ((2n) choose (n))

In mathematics the nth central binomial coefficient is the particular binomial coefficient

In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles.

In mathematics, Faulhaber's formula, named after the early 17th century mathematician Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers

In mathematics, the Schuette–Nesbitt formula is a generalization of the inclusion–exclusion principle. It is named after Donald R. Schuette and Cecil J. Nesbitt.

<span class="mw-page-title-main">Anatoly Karatsuba</span> Russian mathematician (1937–2008)

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

References

  1. See Askey, Richard (1975), Orthogonal polynomials and special functions, Regional Conference Series in Applied Mathematics, vol. 21, Philadelphia, PA: SIAM, pp. 59–60 for the history.