Vernon Ahmadjian | |
---|---|
Born | |
Died | March 13, 2012 81) | (aged
Education | Clark University, Harvard University |
Occupation(s) | professor, Lichenologist |
Vernon Ahmadjian (May 19, 1930 - March 13, 2012) was a distinguished professor at Clark University in Worcester, Massachusetts. He specialized in the symbiosis of lichens, and wrote several books and numerous publications on the subject.
Ahmadjian was born on May 19, 1930, in Whitinsville, Massachusetts. After graduating with his BA in 1952 from Clark University, Ahmadjian served for two years in the United States Army in the Combat Medical Corps during the Korean War. Upon his return to civilian life, Ahmadjian continued his studies at Clark, receiving his MA in 1956, and then went on to achieve his PhD from Harvard University in 1960. [1]
Owing to his lichen field work in the 1960s at McMurdo Station in Antarctica, the National Science Foundation awarded him with the Antarctic Medal in 1967, and gave a peak in the Queen Alexandria Range of the Transantarctic Mountains the name of "Ahmadjian Peak". [1]
In 1996, Ahmadjian was honored by the International Association for Lichenology (IAL) with an Acharius Medal for outstanding research in the field of lichenology. [2]
He died on March 13, 2012, in Falmouth, Massachusetts. [1]
Lichenology is the branch of mycology that studies the lichens, symbiotic organisms made up of an intimate symbiotic association of a microscopic alga with a filamentous fungus. Lichens are chiefly characterized by this symbiosis.
Beginning in 1867, a lichen was understood as a symbiosis of an algae or cyanobacteria, living among filaments of multiple fungi species. In 2016, new research by T. Spribille et al. revealed a third partner, a yeast imbedded in the lichen cortex or "skin".
Xanthoria parietina is a foliose lichen in the family Teloschistaceae. It has wide distribution, and many common names such as common orange lichen, yellow scale, maritime sunburst lichen and shore lichen. It can be found near the shore on rocks or walls, and also on inland rocks, walls, or tree bark. It was chosen as a model organism for genomic sequencing by the US Department of Energy Joint Genome Institute (JGI).
Trebouxia is a unicellular green alga. It is a photosynthetic organism that can exist in almost all habitats found in polar, tropical, and temperate regions. It can either exist in a symbiotic relationship with fungi in the form of lichen or it can survive independently as a free-living organism alone or in colonies. Trebouxia is the most common photobiont in extant lichens. It is a primary producer of marine, freshwater and terrestrial ecosystems. It uses carotenoids and chlorophyll a and b to harvest energy from the sun and provide nutrients to various animals and insects.
Verrucariaceae is a family of lichens and a few non-lichenised fungi in the order Verrucariales. The lichens have a wide variety of thallus forms, from crustose (crust-like) to foliose (bushy) and squamulose (scaly). Most of them grow on land, some in freshwater and a few in the sea. Many are free-living but there are some species that are parasites on other lichens, while one marine species always lives together with a leafy green alga.
Pilophorus acicularis, commonly known as the nail lichen or the devil's matchstick lichen, is a species of matchstick lichen in the family Cladoniaceae.
Lichens are symbiotic organisms made up of multiple species: a fungus, one or more photobionts and sometimes a yeast. They are regularly grouped by their external appearance – a characteristic known as their growth form. This form, which is based on the appearance of vegetative part of the lichen, varies depending on the species and the environmental conditions it faces. Those who study lichens (lichenologists) have described a dozen of these forms: areolate, byssoid, calicioid, cladoniform, crustose, filamentous, foliose, fruticose, gelatinous, leprose, placoidioid and squamulose. Traditionally, crustose (flat), foliose (leafy) and fruticose (shrubby) are considered to be the three main forms. In addition to these more formalised, traditional growth types, there are a handful of informal types named for their resemblance to the lichens of specific genera. These include alectorioid, catapyrenioid, cetrarioid, hypogymnioid, parmelioid and usneoid.
Lichen anatomy and physiology is very different from the anatomy and physiology of the fungus and/or algae and/or cyanobacteria that make up the lichen when growing apart from the lichen, either naturally, or in culture. The fungal partner is called the mycobiont. The photosynthetic partner, algae or cyanobacteria, is called the photobiont. The body of a lichens that does not contain reproductive parts of the fungus is called the thallus. The thallus is different from those of either the fungus or alga growing separately. The fungus surrounds the algal cells, often enclosing them within complex fungal tissues unique to lichen associations. In many species the fungus penetrates the algal cell wall, forming penetration pegs or haustoria similar to those produced by pathogenic fungi. Lichens are capable of surviving extremely low levels of water content (poikilohydric). However, the re-configuration of membranes following a period of dehydration requires several minutes at least.
Symbiosis in lichens is the mutually beneficial symbiotic relationship of green algae and/or blue-green algae (cyanobacteria) living among filaments of a fungus, forming lichen.
Syo Kurokawa was a noted Japanese lichenologist and 1994 recipient of the Acharius Medal. He studied under Mason Hale and Yasuhiko Asahina.
Rosmarie Honegger is a Swiss lichenologist and Emeritus Professor at the University of Zurich.
Elisabeth Peveling was a German botanist. Her scientific research was largely specialized in the cytology and ultrastructure of lichens.
Peltigera papuana is a lichenized fungus in the family Peltigeraceae. It was described in 2009 from Madang Province of Papua New Guinea, from which it obtained its specific epithet. Genetic analysis of both the mycobiont and the photobiont, which is a Nostoc cyanobacterium, suggests that the evolutionary origin of Pelitgera papuana is from an ancient dispersal event from South America, although this remains inconclusive.
Pulchrocladia retipora, commonly known as the coral lichen, is a species of fruticose lichen in the family Cladoniaceae. Found predominantly in Australasia, its habitats range from the Australian Capital Territory to New Zealand's North and South Islands, and even the Pacific region of New Caledonia, where it grows in coastal and alpine heathlands. The lichen features coral-like branches and subbranches with numerous intricate, netlike perforations. It is known by multiple names, with some sources referring to it by its synonym Cladia retipora, or the common name lace lichen.
The following outline provides an overview of and topical guide to lichens.
Christian Leuckert was a lichen taxonomist who applied the diversity of secondary metabolites within lichens as useful taxonomic criteria. He was Director of the Institute of Plant Systematics and Plant Geography at the Free University of Berlin from the 1970s until 1995.
Trebouxia decolorans is a widespread and common symbiotic species of green alga that is found in association with different species of lichen-forming fungi. Some lichens in which it is the photobiont partner are Xanthoria parietina and Anaptychia ciliaris.
Trebouxia gelatinosa is a common symbiotic species of green alga in the family Trebouxiaceae. Formally described as new to science in 1975, it is usually found in association with different species of lichen-forming fungi.
Asterochloris is a genus of green algae in the family Trebouxiophyceae. It is a common photobiont in lichen, occurring in the thalli of more than 20 lichen genera worldwide. Asterochloris is distinguishable from the morphologically similar genus Trebouxia, primarily due to its deeply lobed chloroplast, the placement of the chloroplast along the cell's periphery before the initiation of zoospore or aplanospore formation, and its tendency to primarily reproduce asexually through the production of aplanospores.