A vibrating structure gyroscope (VSG), defined by the IEEE as a Coriolis vibratory gyroscope (CVG), [1] is a gyroscope that uses a vibrating structure to determine the rate of rotation. A vibrating structure gyroscope functions much like the halteres of flies (insects in the order Diptera).
The underlying physical principle is that a vibrating object tends to continue vibrating in the same plane even if its support rotates. The Coriolis effect causes the object to exert a force on its support, and by measuring this force the rate of rotation can be determined.
Vibrating structure gyroscopes are simpler and cheaper than conventional rotating gyroscopes of similar accuracy. Inexpensive vibrating structure gyroscopes manufactured with micro-electromechanical systems (MEMS) technology are widely used in smartphones, gaming devices, cameras and many other applications.
Consider two proof masses vibrating in plane (as in the MEMS gyro) at frequency . The Coriolis effect induces an acceleration on the proof masses equal to , where is a velocity and is an angular rate of rotation. The in-plane velocity of the proof masses is given by , if the in-plane position is given by . The out-of-plane motion , induced by rotation, is given by:
where
By measuring , we can thus determine the rate of rotation .
This section may contain excessive or inappropriate references to self-published sources .(March 2011) |
This type of gyroscope was developed by GEC Marconi and Ferranti in the 1980s using metal alloys with attached piezoelectric elements and a single-piece piezoceramic design. Subsequently, in the 90s, CRGs with magneto-electric excitation and readout were produced by American-based Inertial Engineering, Inc. in California, and piezoceramic variants by Watson Industries. A recently patented variant by Innalabs uses a cylindrical design resonator made from Elinvar-type alloy with piezoceramic elements for excitation and pickoff at its bottom.
This breakthrough technology gave a substantially increased product life (MTBF > 500,000 hours); with its shock resistance (>300G), it should qualify for "tactical" (mid-accuracy) applications.
The resonator is operated in its second-order resonant mode. The Q-factor is usually about 20,000; that predetermines its noise and angular random walks. Standing waves are elliptically-shaped oscillations with four antinodes and four nodes located circumferentially along the rim.
The angle between two adjacent antinode – nodes is 45 degrees. One of the elliptical resonant modes is excited to a prescribed amplitude. When the device rotates about its sensitive axis (along its inner stem), the resulting Coriolis forces acting on the resonator's vibrating mass elements excite the second resonant mode. The angle between major axes of the two modes is also 45 degrees.
A closed loop drives the second resonant mode to zero, and the force required to null this mode is proportional to the input rotation rate. This control loop is designated the force-rebalanced mode.
Piezoelectric elements on the resonator produce forces and sense induced motions. This electromechanical system provides the low output noise and large dynamic range that demanding applications require, but suffers from intense acoustic noises and high overloads.
A piezoelectric material can be induced to vibrate, and lateral motion due to Coriolis force can be measured to produce a signal related to the rate of rotation. [2]
This type of gyroscope uses a pair of test masses driven to resonance. Their displacement from the plane of oscillation is measured to produce a signal related to the system's rate of rotation.
Frederick William Meredith registered a patent for such a device in 1942 while working at the Royal Aircraft Establishment. Further development was carried out at the RAE in 1958 by G. H. Hunt and A. E. W. Hobbs, who demonstrated drift of less than 1°/h or (2.78×10−4)°/s. [3]
Modern variants of tactical gyros use doubled tuning forks such as those produced by American manufacturer Systron Donner in California and French manufacturer Safran Electronics & Defense / Safran Group. [4]
Also called a hemispherical resonator gyroscope or HRG, a wine-glass resonator uses a thin solid-state hemisphere anchored by a thick stem. The hemisphere with its stem is driven to flexural resonance and the nodal points are measured to detect rotation. There are two basic variants of such a system: one based on a rate regime of operation ("force-to-rebalance mode") and another variant based on an integrating regime of operation ("whole-angle mode"). Usually, the latter one is used in combination with a controlled parametric excitation. It is possible to use both regimes with the same hardware, which is a feature unique to these gyroscopes.
For a single-piece design (i.e., the hemispherical cup and stem(s) form a monolithic part) made from high-purity quartz glass, it is possible to reach a Q-factor greater than 30-50 million in vacuum, so the corresponding random walks are extremely low. The Q is limited by the coating, an extremely thin film of gold or platinum, and by fixture losses. [5] Such resonators have to be fine-tuned by ion-beam micro-erosion of the glass or by laser ablation. Engineers and researchers in several countries have been working on further improvements of these sophisticated state-of-art technologies. [6]
Safran and Northrop Grumman are the major manufacturers of HRG. [7] [8]
A wheel is driven to rotate a fraction of a full turn about its axis. The tilt of the wheel is measured to produce a signal related to the rate of rotation. [9]
Inexpensive vibrating structure microelectromechanical systems (MEMS) gyroscopes have become widely available. These are packaged similarly to other integrated circuits and may provide either analogue or digital outputs. In many cases, a single part includes gyroscopic sensors for multiple axes. Some parts incorporate multiple gyroscopes and accelerometers (or multiple-axis gyroscopes and accelerometers), to achieve output that has six full degrees of freedom. These units are called inertial measurement units, or IMUs. Panasonic, Robert Bosch GmbH, InvenSense, Seiko Epson, Sensonor, Hanking Electronics, STMicroelectronics, Freescale Semiconductor, and Analog Devices are major manufacturers.
Internally, MEMS gyroscopes use micro-lithographically constructed versions of one or more of the mechanisms outlined above (tuning forks, vibrating wheels, or resonant solids of various designs, i.e., similar to TFG, CRG, or HRG mentioned above). [10]
MEMS gyroscopes are used in automotive roll-over prevention and airbag systems, image stabilization, and have many other potential applications. [11]
Automotive yaw sensors can be built around vibrating structure gyroscopes. These are used to detect error states in yaw compared to a predicted response when connected as an input to electronic stability control systems in conjunction with a steering wheel sensor. [12] Advanced systems could conceivably offer rollover detection based on a second VSG but it is cheaper to add longitudinal and vertical accelerometers to the existing lateral one to this end.
The Nintendo Game Boy Advance game WarioWare: Twisted! uses a piezoelectric gyroscope to detect rotational movement. The Sony SIXAXIS PS3 controller uses a single MEMS gyroscope to measure the sixth axis (yaw). The Nintendo Wii MotionPlus accessory uses multi-axis MEMS gyroscopes provided by InvenSense to augment the motion sensing capabilities of the Wii Remote. [13] Most modern smartphones and gaming devices also feature MEMS gyroscopes.
Vibrating structure gyroscopes are commonly used in radio-controlled helicopters to help control the helicopter's tail rotor and in radio-controlled airplanes to help keep the attitude steady during flight. They are also used in multirotor flight controllers, since multirotors are inherently aerodynamically unstable and cannot stay airborne without electronic stabilization.
Epson Robots uses a quartz MEMS gyroscope, called QMEMS, to detect and control vibrations on their robots. This helps the robots position the robot end effector with high precision in high speed and fast-deceleration motion. [14]
Many image stabilization systems on video and still cameras employ vibrating structure gyroscopes.
The oscillation can also be induced and controlled in the vibrating structure gyroscope for the positioning of spacecraft such as Cassini–Huygens . [15] These small hemispherical resonator gyroscopes made of quartz glass operate in vacuum. There are also prototypes of elastically decoupled cylindrical resonator gyroscopes (CRG) [16] [17] made from high-purity single-crystalline sapphire. The high-purity leuko-sapphire have Q-factor an order of value higher than quartz glass used for HRG, but this material is hard and has anisotropy. They provide accurate 3 axis positioning of the spacecraft and are highly reliable over the years as they have no moving parts.
The Segway Human Transporter uses a vibrating structure gyroscope made by Silicon Sensing Systems to stabilize the operator platform. [18]
In physics, the Coriolis force is an inertial force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.
In classical physics and special relativity, an inertial frame of reference is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative to the frame until acted upon by external forces. In such a frame the laws of nature can be observed without the need for acceleration correction.
Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.
A crystal oscillator is an electronic oscillator circuit that uses a piezoelectric crystal as a frequency-selective element. The oscillator frequency is often used to keep track of time, as in quartz wristwatches, to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters and receivers. The most common type of piezoelectric resonator used is a quartz crystal, so oscillator circuits incorporating them became known as crystal oscillators. However, other piezoelectric materials including polycrystalline ceramics are used in similar circuits.
Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration that matches its natural frequency. When this happens, the object or system absorbs energy from the external force and starts vibrating with a larger amplitude. Resonance can occur in various systems, such as mechanical, electrical, or acoustic systems, and it is often desirable in certain applications, such as musical instruments or radio receivers. However, resonance can also be detrimental, leading to excessive vibrations or even structural failure in some cases.
A gyroscope is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or disc in which the axis of rotation is free to assume any orientation by itself. When rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum.
A gyrocompass is a type of non-magnetic compass which is based on a fast-spinning disc and the rotation of the Earth to find geographical direction automatically. A gyrocompass makes use of one of the seven fundamental ways to determine the heading of a vehicle. A gyroscope is an essential component of a gyrocompass, but they are different devices; a gyrocompass is built to use the effect of gyroscopic precession, which is a distinctive aspect of the general gyroscopic effect. Gyrocompasses, such as the fibre optic gyrocompass are widely used to provide a heading for navigation on ships. This is because they have two significant advantages over magnetic compasses:
In physics and engineering, the quality factor or Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost in one radian of the cycle of oscillation. Q factor is alternatively defined as the ratio of a resonator's centre frequency to its bandwidth when subject to an oscillating driving force. These two definitions give numerically similar, but not identical, results. Higher Q indicates a lower rate of energy loss and the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Resonators with high quality factors have low damping, so that they ring or vibrate longer.
The Coriolis frequencyƒ, also called the Coriolis parameter or Coriolis coefficient, is equal to twice the rotation rate Ω of the Earth multiplied by the sine of the latitude .
A quantum gyroscope is a very sensitive device to measure angular rotation based on quantum mechanical principles. The first of these was built by Richard Packard and his colleagues at the University of California, Berkeley. The extreme sensitivity means that theoretically, a larger version could detect effects like minute changes in the rotational rate of the Earth.
Inertial waves, also known as inertial oscillations, are a type of mechanical wave possible in rotating fluids. Unlike surface gravity waves commonly seen at the beach or in the bathtub, inertial waves flow through the interior of the fluid, not at the surface. Like any other kind of wave, an inertial wave is caused by a restoring force and characterized by its wavelength and frequency. Because the restoring force for inertial waves is the Coriolis force, their wavelengths and frequencies are related in a peculiar way. Inertial waves are transverse. Most commonly they are observed in atmospheres, oceans, lakes, and laboratory experiments. Rossby waves, geostrophic currents, and geostrophic winds are examples of inertial waves. Inertial waves are also likely to exist in the molten core of the rotating Earth.
A mechanical amplifier or a mechanical amplifying element is a linkage mechanism that amplifies the magnitude of mechanical quantities such as force, displacement, velocity, acceleration and torque in linear and rotational systems. In some applications, mechanical amplification induced by nature or unintentional oversights in man-made designs can be disastrous, causing situations such as the 1940 Tacoma Narrows Bridge collapse. When employed appropriately, it can help to magnify small mechanical signals for practical applications.
The geodetic effect represents the effect of the curvature of spacetime, predicted by general relativity, on a vector carried along with an orbiting body. For example, the vector could be the angular momentum of a gyroscope orbiting the Earth, as carried out by the Gravity Probe B experiment. The geodetic effect was first predicted by Willem de Sitter in 1916, who provided relativistic corrections to the Earth–Moon system's motion. De Sitter's work was extended in 1918 by Jan Schouten and in 1920 by Adriaan Fokker. It can also be applied to a particular secular precession of astronomical orbits, equivalent to the rotation of the Laplace–Runge–Lenz vector.
A gyroscopic exercise tool is a specialized device used in physical therapy to improve wrist strength and promote the development of palm, wrist, forearm, and finger muscles. It can also be used as a unique demonstration of some aspects of rotational dynamics. The device consists of a tennis ball-sized plastic or metal shell surrounding a free-spinning mass, with an inner heavy core, which can be spun by a short rip string or using a self-start mechanism by means of rewinding it against a spring to give it potential energy. Once the gyroscope inside is going fast enough, the person holding the device can accelerate the spinning mass to high rotation rates by moving the wrist in a circular motion. The force enacted on the user increases as the speed of the inner gyroscope increases.
Isaac Newton's rotating spheres argument attempts to demonstrate that true rotational motion can be defined by observing the tension in the string joining two identical spheres. The basis of the argument is that all observers make two observations: the tension in the string joining the bodies and the rate of rotation of the spheres. Only for the truly non-rotating observer will the tension in the string be explained using only the observed rate of rotation. For all other observers a "correction" is required that accounts for the tension calculated being different from the one expected using the observed rate of rotation. It is one of five arguments from the "properties, causes, and effects" of true motion and rest that support his contention that, in general, true motion and rest cannot be defined as special instances of motion or rest relative to other bodies, but instead can be defined only by reference to absolute space. Alternatively, these experiments provide an operational definition of what is meant by "absolute rotation", and do not pretend to address the question of "rotation relative to what?" General relativity dispenses with absolute space and with physics whose cause is external to the system, with the concept of geodesics of spacetime.
An inertial navigation system is a navigation device that uses motion sensors (accelerometers), rotation sensors (gyroscopes) and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and sometimes by magnetic sensors (magnetometers) and/or speed measuring devices. INSs are used on mobile robots and on vehicles such as ships, aircraft, submarines, guided missiles, and spacecraft. Older INS systems generally used an inertial platform as their mounting point to the vehicle and the terms are sometimes considered synonymous.
In mathematics and electronics, cavity perturbation theory describes methods for derivation of perturbation formulae for performance changes of a cavity resonator.
Circuit quantum electrodynamics provides a means of studying the fundamental interaction between light and matter. As in the field of cavity quantum electrodynamics, a single photon within a single mode cavity coherently couples to a quantum object (atom). In contrast to cavity QED, the photon is stored in a one-dimensional on-chip resonator and the quantum object is no natural atom but an artificial one. These artificial atoms usually are mesoscopic devices which exhibit an atom-like energy spectrum. The field of circuit QED is a prominent example for quantum information processing and a promising candidate for future quantum computation.
The hemispherical resonator gyroscope (HRG), also called wine-glass gyroscope or mushroom gyro, is a compact, low-noise, high-performance angular rate or rotation sensor. An HRG is made using a thin solid-state hemispherical shell, anchored by a thick stem. This shell is driven to a flexural resonance by electrostatic forces generated by electrodes which are deposited directly onto separate fused-quartz structures that surround the shell. The gyroscopic effect is obtained from the inertial property of the flexural standing waves. Although the HRG is a mechanical system, it has no moving parts, and can be very compact.
In physics, angular mechanics is a field of mechanics which studies rotational movement. It studies things such as angular momentum, angular velocity, and torque. It also studies more advanced things such as Coriolis force and Angular aerodynamics. It is used in many fields such as toy making, aerospace engineering, and aviation.
{{cite web}}
: CS1 maint: archived copy as title (link)