A vibrator is an electromechanical device that takes a DC electrical supply and converts it into pulses that can be fed into a transformer. It is similar in purpose (although greatly different in operation) to the solid-state power inverter.
Before the development of switch-mode power supplies and the introduction of semiconductor devices operating off low voltage, there was a requirement to generate voltages of about 50 to 250 V DC from a vehicle's battery. A vibrator was used to provide pulsating DC which could be converted to a higher voltage with a transformer, rectified, and filtered to create higher-voltage DC. It is essentially a relay using normally closed contacts to supply power to the relay coil, thus immediately breaking the connection, only to be reconnected very quickly through the normally closed contacts. It happens so rapidly it vibrates, and sounds like a buzzer. This same rapidly pulsing contact applies the rising and falling DC voltage to the transformer which can step it up to a higher voltage. [1]
The primary use for this type of circuit was to operate vacuum tube radios in vehicles, but it also saw use with other mobile electronic devices with a 6 or 12 V accumulator, especially in places with no mains electricity supply such as farms. These vibrator power supplies became popular in the 1940s, replacing more bulky motor-generator systems for the generation of AC voltages for such applications. [2] [3] Vacuum tubes require plate voltages ranging from about 45 volts to 250 volts in electronic devices such as radios. For portable radios, hearing aids and similar equipment, B batteries were manufactured with various voltage ratings. In order to provide the necessary voltage for a radio from the typical 6 or 12 volt DC supply available in a car or from a farm lighting battery, it was necessary to convert the steady DC supply to a pulsating DC and use a transformer to increase the voltage.
Vibrators often experienced mechanical malfunctions, being constantly in motion, such as the springs losing tension, and the contact points wearing down. [3] As tubes began to be replaced by transistor based electrical systems, the need to generate such high voltages began to diminish. Mechanical vibrators fell out of production near the end of the 20th century, but solid-state electronic vibrators are still manufactured to be backwards compatible with older units. [4]
The vibrator was a device with switch contacts mounted at the ends of flexible metal strips. In operation, these strips are vibrated by an electromagnet, causing the contacts to open and close rapidly. The contacts interrupt the 6 or 12V direct current from the battery to form a stream of pulses which change back and forth from 0 volts to the battery voltage, effectively generating a square wave. Unlike a steady direct current, when such a pulsating current is applied to the primary winding of a transformer it will induce an alternating current in the secondary winding, at a pre-determined voltage based on the turn ratio of the windings. This current can then be rectified by a thermionic diode, a copper-oxide/selenium rectifier, or by an additional set of mechanical contacts (in which case the vibrator acts as a type of synchronous rectifier). The rectified output is then filtered, ultimately producing a DC voltage typically much higher than the battery voltage, with some losses dissipated as heat. This arrangement is essentially an electromechanical inverter circuit.
The vibrator's primary contacts alternately make and break current supply to the transformer primary. As it is impossible for the vibrator's contacts to change over instantaneously, the collapsing magnetic field in the core will induce a high voltage in the windings, and will cause sparking at the vibrator's contacts. This would erode the contacts very quickly, so a snubber capacitor with a high voltage rating (C8 in the diagram) is added across the transformer secondary to damp out the unwanted high-voltage "spikes".
Since vibrators wore out over time, they were usually encased in a steel or aluminum "tin can" enclosure with a multi-pin plug at the bottom (similar to the contact pins on vacuum tubes), so they could be quickly unplugged and replaced without using tools.
Vibrators generate a certain amount of audible noise (a constant buzzing sound) while in operation, which could potentially be heard by passengers in the car while the radio was on. To help contain this sound within the vibrator's enclosure, the inside surface of the can was often lined with a thick soundproofing material, such as foam rubber. Since vibrators were typically plugged into sockets mounted directly on the radio chassis, the vibration could potentially be mechanically coupled to the chassis, causing it to act as a sounding-board for the noise. To prevent this, the sound-deadening lining inside the can was sometimes made thick enough to support the vibrator's components by friction alone. The components were then connected to the plug pins by flexible wires, to further isolate the vibration from the plug.
A vacuum tube, electron tube, valve, or tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.
A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation is performed by an inverter.
A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a result, power supplies are sometimes referred to as electric power converters. Some power supplies are separate standalone pieces of equipment, while others are built into the load appliances that they power. Examples of the latter include power supplies found in desktop computers and consumer electronics devices. Other functions that power supplies may perform include limiting the current drawn by the load to safe levels, shutting off the current in the event of an electrical fault, power conditioning to prevent electronic noise or voltage surges on the input from reaching the load, power-factor correction, and storing energy so it can continue to power the load in the event of a temporary interruption in the source power.
An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines.
A power inverter, inverter or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opposite of rectifiers which were originally large electromechanical devices converting AC to DC.
A switched-mode power supply (SMPS), also called switching-mode power supply, switch-mode power supply, switched power supply, or simply switcher, is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently.
A DC connector is an electrical connector for supplying direct current (DC) power.
A DC-to-DC converter is an electronic circuit or electromechanical device that converts a source of direct current (DC) from one voltage level to another. It is a type of electric power converter. Power levels range from very low to very high.
A voltage regulator is a system designed to automatically maintain a constant voltage. It may use a simple feed-forward design or may include negative feedback. It may use an electromechanical mechanism, or electronic components. Depending on the design, it may be used to regulate one or more AC or DC voltages.
A rotary converter is a type of electrical machine which acts as a mechanical rectifier, inverter or frequency converter.
A flyback transformer (FBT), also called a line output transformer (LOPT), is a special type of electrical transformer. It was initially designed to generate high-voltage sawtooth signals at a relatively high frequency. In modern applications, it is used extensively in switched-mode power supplies for both low (3 V) and high voltage supplies.
The term All American Five is a colloquial name for mass-produced, superheterodyne radio receivers that used five vacuum tubes in their design. These radio sets were designed to receive amplitude modulation (AM) broadcasts in the medium wave band, and were manufactured in the United States from the mid-1930s until the early 1960s. By eliminating a power transformer, cost of the units was kept low; the same principle was later applied to television receivers. Variations in the design for lower cost, shortwave bands, better performance or special power supplies existed, although many sets used an identical set of vacuum tubes.
A welding power supply is a device that provides or modulates an electric current to perform arc welding. There are multiple arc welding processes ranging from Shielded Metal Arc Welding (SMAW) to inert shielding gas like Gas metal arc welding (GMAW) or Gas tungsten arc welding (GTAW). Welding power supplies primarily serve as devices that allow a welder to exercise control over whether current is alternating current (AC) or direct current (DC), as well as the amount of current and voltage.
An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.
A frequency changer or frequency converter is an electronic or electromechanical device that converts alternating current (AC) of one frequency to alternating current of another frequency. The device may also change the voltage, but if it does, that is incidental to its principal purpose, since voltage conversion of alternating current is much easier to achieve than frequency conversion.
A mechanical rectifier is a device for converting alternating current (AC) to direct current (DC) by means of mechanically operated switches. The best-known type is the commutator, which is an integral part of a DC dynamo, but before solid-state devices became available, independent mechanical rectifiers were used for certain applications. Before the invention of semiconductors, rectification at high currents involved serious losses.
An AC/DC receiver design is a style of power supply of vacuum tube radio or television receivers that eliminated the bulky and expensive mains transformer. A side-effect of the design was that the receiver could in principle operate from a DC supply as well as an AC supply. Consequently, they were known as "AC/DC receivers".
In vacuum tube technology, HT or high tension describes the main power supply to the circuit, which produces the current between anode and cathode. It is also known as the plate supply or voltage, B battery supply, or simply labeled →B on circuit diagrams, from the days of battery powered circuitry.
A trembler coil, buzz coil or vibrator coil is a type of high-voltage ignition coil used in the ignition system of early automobiles, most notably the Benz Patent-Motorwagen and the Ford Model T. Its distinguishing feature is a vibrating magnetically-activated contact called a trembler or interrupter, which breaks the primary current, generating multiple sparks during each cylinder's power stroke. Trembler coils were first used on the 1886 Benz automobile, and were used on the Model T until 1927.
This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.