Mechanical rectifier

Last updated

A mechanical rectifier is a device for converting alternating current (AC) to direct current (DC) by means of mechanically operated switches. The best-known type is the commutator, which is an integral part of a DC dynamo, but before solid-state devices became available, independent mechanical rectifiers were used for certain applications. Before the invention of semiconductors, rectification at high currents involved serious losses.

Contents

There were various vacuum/gas devices, such as the mercury arc rectifiers, thyratrons, ignitrons, and vacuum diodes. Solid-state technology was in its infancy, represented by copper oxide and selenium rectifiers. All of these gave excessive forward voltage drop at high currents. One answer was mechanically opening and closing contacts, if this could be done quickly and cleanly enough.

Vibrator type

This was the reverse of a vibrator inverter. An electromagnet, powered by DC through contacts it operated (like a buzzer) (or fed with AC), caused a spring to vibrate and the spring-operated change-over contacts which converted the AC to DC. This arrangement was only suitable for low-power applications, e.g. auto radios and was also found in some motorcycle electrical systems, where it was combined with a voltage regulator.

Motor-driven type

This operated on the same principle as the vibrator type but the change-over contacts were operated by a synchronous motor. It was suitable for high-power applications, e.g. electrolysis cells and electrostatic precipitators.

Still rectifier

A mechanical rectifier was patented in 1895 (US patent 547043) [1] by William Joseph Still. The details are obscure but it appears from the diagram to be similar to a third-brush dynamo.

BTH rectifier

The machine shown in the reference [2] was designed by Read and Gimson et al., at British Thomson-Houston (BTH) Rugby, Warwickshire, England, in the early 1950s. It is a three-phase mechanical rectifier working at 220 volts and 15,000 amperes, and its application was the powering of huge banks of electrolysis cells.

The central shaft was rotated by synchronous motor, driving an eccentric with a throw of about 2mm. (0.077 inch) Push-rods from this operated the contacts. The timing was critical, and was adjusted by rotating the position of the eccentric on its shaft, and by sliding wedges between the eccentric and push-rods.

Crucial to this system were the commutating reactors, inductors that ensured the contacts closed when the voltage across them was small, and opened when the current was small. Without these, contact wear would have been intolerably heavy. These were series inductors that operated for most of the cycle with saturated cores. When the current decreased below that for saturation, their inductances reduced the current considerably. Contact switching was timed to occur while their cores were un-saturated.

In the USA, similar rectifiers were made by the I-T-E circuit breaker company.

This machinery was undoubtedly successful; its efficiency was determined to be 97.25%. Contact life was never fully determined but considerably exceeded 2000 hours. However, the rapid development of the silicon diode made it ultimately redundant.

Related Research Articles

Diode Electronic component that only allows current to flow in one direction

A diode is a two-terminal electronic component that conducts current primarily in one direction ; it has low resistance in one direction, and high resistance in the other.

Direct current Unidirectional flow of electric charge

Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. The electric current flows in a constant direction, distinguishing it from alternating current (AC). A term formerly used for this type of current was galvanic current.

Rectifier Electrical device that converts AC to DC

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation is performed by the inverter.

Electric generator Device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motive power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all of the power for electric power grids.

Alternator Device converting mechanical into electrical energy

An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines.

Power inverter Device that changes direct current (DC) to alternating current (AC)

A power inverter, inverter or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opposite of "converters" which were originally large electromechanical devices converting AC to DC.

Switched-mode power supply Power supply with switching regulator

A switched-mode power supply is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently.

A DC-to-DC converter is an electronic circuit or electromechanical device that converts a source of direct current (DC) from one voltage level to another. It is a type of electric power converter. Power levels range from very low to very high.

Voltage regulator System designed to maintain a constant voltage

A voltage regulator is a system designed to automatically maintain a constant voltage. A voltage regulator may use a simple feed-forward design or may include negative feedback. It may use an electromechanical mechanism, or electronic components. Depending on the design, it may be used to regulate one or more AC or DC voltages.

DC motor Motor which works on direct current

A DC motor is any of a class of rotary electrical motors that converts direct current (DC) electrical energy into mechanical energy. The most common types rely on the forces produced by magnetic fields. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor.

Motor–generator Device for converting electrical power to another form

A motor–generator is a device for converting electrical power to another form. Motor–generator sets are used to convert frequency, voltage, or phase of power. They may also be used to isolate electrical loads from the electrical power supply line. Large motor–generators were widely used to convert industrial amounts of power while smaller motor–generators were used to convert battery power to higher DC voltages.

A snubber is a device used to suppress a phenomenon such as voltage transients in electrical systems, pressure transients in fluid systems or excess force or rapid movement in mechanical systems.

Rotary converter

A rotary converter is a type of electrical machine which acts as a mechanical rectifier, inverter or frequency converter.

All American Five Colloquial name for mass-produced, superheterodyne radio receivers with 5 vacuum tubes

The term All American Five is a colloquial name for mass-produced, superheterodyne radio receivers that used five vacuum tubes in their design. These radio sets were designed to receive amplitude modulation (AM) broadcasts in the medium wave band, and were manufactured in the United States from the mid-1930s until the early 1960s. By eliminating a power transformer, cost of the units was kept low; the same principle was later applied to television receivers. Variations in the design for lower cost, shortwave bands, better performance or special power supplies existed, although many sets used an identical set of vacuum tubes.

Electronic component Discrete device in an electronic system

An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements.

Vibrator (electronic)

A vibrator is an electromechanical device that takes a DC electrical supply and converts it into pulses that can be fed into a transformer. It is similar in purpose to the solid-state power inverter.

Dynamo Electrical generator that produces direct current with the use of a commutator

A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter.

Active rectification

Active rectification, or synchronous rectification, is a technique for improving the efficiency of rectification by replacing diodes with actively controlled switches, usually power MOSFETs or power bipolar junction transistors (BJT). Whereas normal semiconductor diodes have a roughly fixed voltage drop of around 0.5-1 volts, active rectifiers behave as resistances, and can have arbitrarily low voltage drop.

Alternator (automotive) Devices in automobiles to charge the battery and power the electrical system

An alternator is a type of electric generator used in modern automobiles to charge the battery and to power the electrical system when its engine is running.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

References

  1. "Espacenet - Original document".
  2. Douglas Self. "Mechanical Rectifiers".